Bell-shaped function

Category:Articles with short descriptionCategory:Short description matches Wikidata Category:Articles needing additional references from December 2018Category:All articles needing additional references
The Gaussian function is the archetypal example of a bell shaped function

A bell-shaped function or simply 'bell curve' is a mathematical function having a characteristic "bell"-shaped curve. These functions are typically continuous or smooth, asymptotically approach zero for large negative/positive x, and have a single, unimodal maximum at small x. Hence, the integral of a bell-shaped function is typically a sigmoid function. Bell shaped functions are also commonly symmetric.

Many common probability distribution functions are bell curves.

Some bell shaped functions, such as the Gaussian function and the probability distribution of the Cauchy distribution, can be used to construct sequences of functions with decreasing variance that approach the Dirac delta distribution.[1] Indeed, the Dirac delta can roughly be thought of as a bell curve with variance tending to zero.

Some examples include:

References

  1. Weisstein, Eric W. "Delta Function". mathworld.wolfram.com. Retrieved 2020-09-21.
  2. "Fuzzy Logic Membership Function". Retrieved 2018-12-29.
  3. "Generalized bell-shaped membership function". Retrieved 2018-12-29.
Category:Functions and mappings
Category:All articles needing additional references Category:Articles needing additional references from December 2018 Category:Articles with short description Category:Functions and mappings Category:Short description matches Wikidata