File:Gauss function.svg
Summary
Description |
English: Gauss function f(x) = 1/x - floor(1/x) |
Date | |
Source | own work with help of Robert Dodier |
Author | Adam majewski |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Maxima Cas src code
One can draw using simple command :
f(x):= 1/x - floor(1/x); plot2d(f(x),[x,0,1]);
For more precise drawing
- split curve into segments
- add end points
/* https://stackoverflow.com/questions/49587741/how-to-draw-graph-of-gauss-function Batch file for Maxima CAS save as a g.mac run maxima : maxima and then : batch("g.mac"); */ kill(all); remvalue(all); ratprint:false; /* ---------- functions ---------------------------------------------------- */ /* Gauss function https://en.wikipedia.org/wiki/Gauss%E2%80%93Kuzmin%E2%80%93Wirsing_operator#The_Gaus_map f: x -> y */ f(x):= 1/x - floor(1/x)$ /* g : x -> x+y*i */ g(x):= x+f(x)*%i$ /* converts complex number z = x*y*%i to the list in a draw format: [x,y] */ draw_f(z):=[float(realpart(z)), float(imagpart(z))]$ /* give Draw List from one point*/ dl(z):=points([draw_f(z)])$ ToPoints(myList):= points(map(draw_f , myList))$ /* gives part of graph */ GivePart(n):=( [Part, xMax, xMin, dx, iMax], if (n>20) then iMax:10 else iMax : 250, xMax : 1/n, xMin : 1/(n+1), dx : (xMax - xMin)/iMax, Part : makelist(xMin + i*dx, i, 0, iMax), Part : map(g, Part), Part[1] : xMin + %i, /* lower semi-continuous function */ Part )$ GiveClosedPoint(z):= [point_type = filled_circle, points_joined = false, point_size = 0.8, dl(z)]$ GiveOpenPoint(z):= [point_type = circle, points_joined = false, point_size = 0.9, dl(z)]$ /* */ AddEndPoints(MyList):=( [zLeft, zRight], zLeft : first(MyList), if (realpart(zLeft)>0.07) then MyList: delete(zLeft, MyList ), zRight : last(MyList), MyList :ToPoints(MyList), MyList : [GiveOpenPoint(zLeft),point_type = filled_circle, points_joined =true, point_size = 0.1, MyList, points_joined = false, GiveClosedPoint(zRight)] )$ GiveList(i_Max):=( [Part, PartList ], PartList:[], for i:1 thru i_Max step 1 do ( Part: GivePart(i), Part : AddEndPoints(Part), PartList : cons(Part, PartList) ), PartList )$ compile(all); nMax:60; /* computations */ pp:GiveList(nMax)$ /* draw */ path:"~/maxima/batch/gauss/test/slim/"$ /* pwd, if empty then file is in a home dir , path should end with "/" */ /* draw it using draw package by */ load(draw); /* if graphic file is empty (= 0 bytes) then run draw2d command again */ draw2d( user_preamble="set key top right; unset mouse", terminal = 'svg, file_name = sconcat(path,"gauss", string(nMax), "a"), font = "Liberation Sans", /* https://commons.wikimedia.org/wiki/Help:SVG#Font_substitution_and_fallback_fonts */ title= "Gauss function g(x)= 1/x - floor(1/x)", /* */ dimensions = [1000, 1000], yrange = [-0.1,1.1], xrange = [-0.1,1.1], xlabel = "x ", ylabel = "y", color = blue, key = "", pp /* draw accepts list of parameters and data */ )$