GCSE Computing/Computing hardware/Introduction to Binary Logic/Binary logic/Bits Bytes Nibbles

What you need to know

Define the terms bit, nibble, byte

A bit

If we only have one wire (or other piece of data storage), it can be on or off. So we could only store a very small piece of information, such as if one thing were true (on) or false (off). This is called a bit.

A nibble

Usually we want to store more than true or false. It could be anything, but let's start simply with trying to store a moderate size number. If we had four bits together we could store 16 numbers (0 to 15).

Exercise

Check that you understand why four bits lets you store 16 different numbers, by writing out every possibility. The start and end of the table to do it is here:

Figure 1 - Table for a nibble
EightsFoursTwosOnesEquals
00000
00011
00102
...............
111115

A byte

A nibble isn't a very useful amount. The main size up from a bit that people usually talk about is a byte, which is normally made up of 8 bits. If we had eight bits we could store 256 numbers (0 to 255).

Exercise

Check that you understand why eight bits lets you store 256 different numbers, by writing out the first ten numbers (0 to 9) and the last ten numbers (246 to 255).

ASCII Table

Let's look at trying to store a single letter. It's not as simple as 26 letters - we might need capitals or lower case, plus there are punctuation marks etc. The table below shows some of the characters available. If you look at the column headed Glyph it shows what letter or symbol it is. The Binary column tells you the binary equivalent. Again, think why we care about binary. A capital letter A, which has the binary 1000001 (65 in Base 10) means that, if this is being transmitted round a computer wires 1 and 7 have a voltage and the others don't.

BinaryOctDecHexGlyph
010 00000403220
010 00010413321 !
010 00100423422"
010 00110433523#
010 01000443624$
010 01010453725 %
010 01100463826&
010 01110473927'
010 10000504028(
010 10010514129)
010 1010052422A*
010 1011053432B+
010 1100054442C,
010 1101055452D-
010 1110056462E.
010 1111057472F/
011 000006048300
011 000106149311
011 001006250322
011 001106351333
011 010006452344
011 010106553355
011 011006654366
011 011106755377
011 100007056388
011 100107157399
011 1010072583A :
011 1011073593B ;
011 1100074603C<
011 1101075613D=
011 1110076623E>
011 1111077633F ?
BinaryOctDecHexGlyph
100 00001006440@
100 00011016541A
100 00101026642B
100 00111036743C
100 01001046844D
100 01011056945E
100 01101067046F
100 01111077147G
100 10001107248H
100 10011117349I
100 1010112744AJ
100 1011113754BK
100 1100114764CL
100 1101115774DM
100 1110116784EN
100 1111117794FO
101 00001208050P
101 00011218151Q
101 00101228252R
101 00111238353S
101 01001248454T
101 01011258555U
101 01101268656V
101 01111278757W
101 10001308858X
101 10011318959Y
101 1010132905AZ
101 1011133915B[
101 1100134925C\
101 1101135935D]
101 1110136945E^
101 1111137955F_
BinaryOctDecHexGlyph
110 00001409660`
110 00011419761a
110 00101429862b
110 00111439963c
110 010014410064d
110 010114510165e
110 011014610266f
110 011114710367g
110 100015010468h
110 100115110569i
110 10101521066Aj
110 10111531076Bk
110 11001541086Cl
110 11011551096Dm
110 11101561106En
110 11111571116Fo
111 000016011270p
111 000116111371q
111 001016211472r
111 001116311573s
111 010016411674t
111 010116511775u
111 011016611876v
111 011116711977w
111 100017012078x
111 100117112179y
111 10101721227Az
111 10111731237B{
111 11001741247C|
111 11011751257D}
111 11101761267E~

ASCII - more detail

You may wonder why the table above starts at 32 and not 0. The answer is that codes 0 to 31 are used for other things that aren't letters, such as a backspace or a new line character.

Category:Book:GCSE Computing#Computing%20hardware/Introduction%20to%20Binary%20Logic/Binary%20logic/Bits%20Bytes%20Nibbles%20
Category:Book:GCSE Computing