A-level Computing/AQA/Paper 2/Fundamentals of data representation/Number bases

PAPER 2 - ⇑ Fundamentals of data representation ⇑

Number systems Number bases Bits and bytes
Category:Book:A-level Computing#AQA/Paper%202/Fundamentals%20of%20data%20representation/Number%20bases


Number Bases

From the Specification : Fundamentals of data representation - Number Bases

Be familiar with the concept of a number base, in particular:

  • decimal (base 10)
  • binary (base 2)
  • hexadecimal (base 16).


Convert between decimal, binary and hexadecimal number bases.

Before we jump into the world of number systems we'll need a point of reference, I recommend that you copy the following table that you can refer to throughout this chapter to check your answers.

HexadecimalBinaryDenary
000000
100011
200102
300113
401004
501015
601106
701117
810008
910019
A101010
B101111
C110012
D110113
E111014
F111115
100001 000016

Denary/Decimal

Denary is the number system that you have most probably grown up with. It is also another way of saying base 10. This means that there are 10 different numbers that you can use for each digit, namely:

0,1,2,3,4,5,6,7,8,9

Notice that if we wish to say 'ten', we use two of the numbers from the above digits, 1 and 0.

ThousandsHundredsTensUnits
103102101100
1000100101
5973

Using the above table we can see that each column has a different value assigned to it. And if we know the column values we can know the number, this will be very useful when we start looking at other base systems. Obviously, the number above is: five-thousands, nine-hundreds, seven-tens and three-units.

5*1000 + 9*100 + 7*10 + 3*1 = 597310

Binary

Binary is a base-2 number system, this means that there are two numbers that you can write for each digit:

0, 1

With these two numbers we should be able to write (or make an approximation of) all the numbers that we could write in denary.

One-hundred and twenty-eightsSixty-foursThirty-twosSixteensEightsFoursTwosUnits
2726252423222120
1286432168421
01101010

Using the above table we can see that each column has a value assigned to it that is the power of two (the base number!), and if we take those values and the corresponding digits we can work out the value of the number: 1*64 + 1*32 + 1*8 + 1*2 = 106.

If you are asked to work out the value of a binary number, the best place to start is by labelling each column with its corresponding value and adding together all the columns that hold a 1. Let's take a look at another example:

000111112
1286432168421
00011111

So now all we need to do is to add the columns containing 1s together: 1*16 + 1*8 + 1*4 + 1*2 + 1*1 = 31

Exercise: Binary

Convert the following binary numbers into denary

000011002

Answer:

1286432168421
00001100
8+4 = 1210

010110012

Answer:

1286432168421
01011001
64 + 16 + 8 + 1 = 8910

000001112

Answer:

1286432168421
00000111
4 + 2 + 1 = 710

010101012

Answer:

1286432168421
01010101
64 + 16 + 4 + 1 = 8510

How do we tell if a binary number is odd?

Answer:

Its right most digit is a one

Is there a short cut to working out a binary number that is made of solid ones, such as: 011111112

Answer:

Yes, take the first 0's column value and minus one

1286432168421
01111111
= 128 - 1 = 127 = 64 + 32 + 16 + 8 + 4 + 2 + 1
000011112 = 16 - 1 = 15 = 8 + 4 + 2 + 1
000001112 = 8 - 1 = 7 = 4 + 2 + 1

If we were to use octal, a base 8 number system, list the different numbers each digit could take:

Answer:


0, 1, 2, 3, 4, 5, 6, 7

Hexadecimal

From the Specification : Fundamentals of data representation - Number Bases

Be familiar with, and able to use, hexadecimal as a shorthand for binary and to understand why it is used in this way.

You may notice from the table that one hexadecimal digit can represent exactly 4 binary bits. Hexadecimal is useful to us as a shorthand way of writing binary, and makes it easier to work with long binary numbers.

Counting is a fundamental concept using symbols to represent groups of objects. We are used to counting using 10 such symbols, 0-9. When we run out of symbols we start a new column of numbers to represent a bigger collection of values. There are other ways of counting that use a different number of symbols, however, the counting process operates in the same manner.

Hexadecimal is a base-16 number system which means we will have 16 different numbers to represent our digits. The only problem being that we run out of numbers after 9, and knowing that 10 is counted as two digits we need to use letters instead:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

We can do exactly the same thing as we did for denary and binary, and write out our table.

165164163162161160
1 048 576655364096256161
0034AF

So now all we need to do is to add the columns containing values together, but remember that A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.

3*4096 + 4*256 + (A)10*16 + (F)15*1 = 1348716

You might be wondering why we would want to use hexadecimal when we have binary and denary, and when computers store and calculate everything in binary. The answer is that it is entirely for human ease. Consider the following example:

RepresentationBase
EFFE1116base-16 hexadecimal
1572814510base-10 denary
1110111111111110000100012base-2 binary

All the numbers are the same and the easiest version to remember/understand for humans is the base-16. Hexadecimal is used in computers for representing numbers for human consumption, having uses for things such as memory addresses, error or colour codes. NOTE: Hexadecimal is used as it is shorthand for binary and easier for people to remember. It DOES NOT take up less space in computer memory, only on paper or in your head! Computers still have to store everything as binary even if it appears as hexadecimal on the screen.

A colour palette showing each colour can be shown as a hexadecimal code
A colour palette showing each colour can be shown as a hexadecimal code
Error messages are written using hex to make it easier for us to remember and record them
Error messages are written using hex to make it easier for us to remember and record them
Exercise: Hexadecimal

Convert the following Hex numbers into decimal/denary:
A116

Answer:

16  1
 A  1

16 * 10 + 1 * 1 = 16110

FF16

Answer:

16  1
 F  F

16 * 15 + 1 * 15 = 25510

0D16

Answer:

16  1
 0  D

16 * 0 + 1 * 13 = 1310

3716

Answer:

16  1
 3  7

16 * 3 + 1 * 7 = 5510

Why would we use the Hexadecimal system?

Answer:

Hexadecimal is used for humans, it is easier to understand and read as it is shorter.

Name a use of the hexadecimal system

Answer:

Hexadecimal is used for error message codes, memory addresses and colour codes

Converting Between Bases

The sum that you saw previously to convert from hex to denary seemed a little cumbersome and in the exam you wouldn't want to make any errors, we therefore have to find an easier way to make the conversion.

Since 4 binary bits are represented by one hexadecimal digit, it is simple to convert between the two. You can group binary bits into groups of 4, starting from the right, and adding extra 0's to the left if required, and then convert each group to their hexadecimal equivalent. For example, the binary number 01101100111101012 can be written like this:

0110 1100 1111 0101

and then by using the table above, you can convert each group of 4 bits into hexadecimal:

0110 1100 1111 0101
  6    C    F    5

So the binary number 01101100111101012 is 6CF516 in hexadecimal. We can check this by converting both to denary. First we'll convert the binary number, since you already know how to do this:

327681638481924096204810245122561286432168421
0110110011110101

By multiplying the columns and then adding the results, the answer is 2789310.

Notice that the column headings are all 2 raised to a power, , , , , and so on. To convert from hexadecimal to denary, we must use column headings that are powers with the base 16, like this:

4096256161
6CF5

(You should memorize the values A-F)

Totalling them all up gives us 2789310, showing that 01101100111101012 is equal to 6CF516.

To convert from denary to hexadecimal, it is recommended to just convert the number to binary first, and then use the simple method above to convert from binary to hexadecimal.

In summary, to convert from one number to another we can use the following rule: Hexadecimal <-> Binary <-> Denary

Exercise: Hexadecimal and Base Conversion

Convert the following Hexadecimal values into Denary:

1216

Answer:

  1    2  (Hex)
0001 0010 (Binary)

128 64 32 16  8  4  2  1
  0  0  0  1  0  0  1  0 = 16+2 = 1810 (decimal)

A516

Answer:

  A    5  (Hex)
1010 0101 (Binary)

128 64 32 16  8  4  2  1
  1  0  1  0  0  1  0  1  = 128+32+4+1 = 16510 (decimal)

7F16

Answer:

  7    F  (Hex)
0111 1111 (Binary)

128 64 32 16  8  4  2  1
  0  1  1  1  1  1  1  1  = 64+32+8+4+2+1 = 12710 (decimal)

1016

Answer:

  1    0  (Hex)
0001 0000 (Binary)

128 64 32 16  8  4  2  1
  0  0  0  1  0  0  0  0  = 1610 (decimal)

Convert the following Binary numbers into hex:

101011012

Answer:

1010 1101 (Binary)
  A    D  (Hex)

1101112

Answer:

0011 0111 (Binary)
  3    7  (Hex)

101011112

Answer:

1010 1111 (Binary)
  A    F  (Hex)

1110101000012

Answer:

1110 1010 0001 (Binary)
  E    A    1  (Hex)

Convert the following decimal numbers into hex:

8710

Answer:

128 64 32 16  8  4  2  1
  0  1  0  1  0  1  1  1  = 64+16+4+2+1 = 8710 (decimal)
0101 0111 (Binary)
  5    7  (Hex)

1210

Answer:

128 64 32 16  8  4  2  1
  0  0  0  0  1  1  0  0  = 8+4 = 12(decimal)
0000 1100 (Binary)
  0    C  (Hex)

11710

Answer:

128 64 32 16  8  4  2  1
  0  1  1  1  0  1  0  1  = 64+32+16+4+1 = 117(decimal)
0111 0101 (Binary)
  7    5  (Hex)

Why might you use Hexadecimal?

Answer:

So that it makes things such as error messages and memory address easier for humans understand, read and remember - as they are shorter

Give two uses of hexadecimal?

Answer:


  • Error message codes
  • Memory address locations
  • Colour codes
Category:Book:A-level Computing#AQA/Paper%202/Fundamentals%20of%20data%20representation/Number%20bases%20
Category:Book:A-level Computing