File:Transmission Matrix.gif
Summary
| Description |
English: Multiple scattering in disordered systems is, for low enough amplitudes, a linear process. As such it can be fully described by a matrix. This "transmission matrix" can be measured column by column measuring the response to a set of input signals.
Just like with any other linear operator, once you know how it acts on a complete basis, you know in principle everything about it, and so you know exactly what input will produce any desired output. |
| Date | |
| Source | https://twitter.com/j_bertolotti/status/1288156950400765952 |
| Author | Jacopo Bertolotti |
| Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
| GIF development |
Mathematica 12.1 code
\[Lambda] = 1;
k0 = (2 \[Pi])/\[Lambda];
c = 1;
\[Omega] = c k0;
\[Alpha] = (4 I)/k0^2;
\[Sigma] = (k0^3 Norm[\[Alpha]]^2)/4;
G[r_] := N[I/4 HankelH1[0, k0 Norm[r] ]];
ReMapC[x_] := RGBColor[(Cos[2 \[Pi] x] + 1)/2 UnitStep[x - 0.5], 0, (Cos[2 \[Pi] x] + 1)/2 UnitStep[0.5 - x]];
\[Theta] = -\[Pi]/4;
source[{x_, y_}, y0_] := E^(I k0 x) E^(-((y - y0)^2/(2 0.5^2)));
dim = 3 10^2;
dipoles = RandomVariate[UniformDistribution[{{-5, 5}, {-10, 10}}], {dim}];
Eoutpos = Table[{5.5, y}, {y, -9, 9, 1.}];
p0 = Table[
E0 = Table[source[dipoles[[j]], y0], {j, 1, dim}];
ME = Table[If[k == j, 0, \[Alpha] k0^2 G[dipoles[[j]] - dipoles[[k]] ] ], {j, 1, dim}, {k, 1, dim}];
Es = Inverse[IdentityMatrix[dim] - ME].E0; (*Es=E0+ME.ES\[Rule]Es=(1-ME)^-1.E0*)
Etot[x_, y_, y0_] := source[{x, y}, y0] + \[Alpha] k0^2 Sum[G[{x, y} - dipoles[[j]] ] Es[[j]], {j, 1, dim}];
{Eout = Table[Re[Etot[5.5, y, y0] ], {y, -9, 9, 1.}],
DensityPlot[Re[Etot[x, y, y0] ], {x, -10, 10}, {y, -10, 10}, PlotPoints -> 50, ColorFunction -> ReMapC, Frame -> False, PlotRange -> All, ImageSize -> Large, Epilog -> {White, Point[dipoles], LightGray, Table[{Disk[Eoutpos[[j]], 0.22]}, {j, 1, Dimensions[Eout][[1]]}], Table[{ReMapC[(Eout[[j]]/Max[Abs@Eout] + 1)/2 ], Disk[Eoutpos[[j]], 0.2]}, {j, 1, Dimensions[Eout][[1]]}]} ]}
, {y0, -9, 9, 1.}];
p1 = Table[
matrix = Table[If[j <= k, ReMapC[(p0[[j, 1, i]]/Max[Abs@p0[[1, 1]]] + 1)/2 ], White], {i, 1, Dimensions[Eout][[1]]}, {j, 1, Dimensions[Eout][[1]]}];
Grid[{{
p0[[k, 2]],
Text[Style["\!\(\*SubscriptBox[\(E\), \(out\)]\)= ", Black, Bold, FontSize -> 16]]
,
Text[Style[MatrixForm[matrix], Bold, FontSize -> 16]]
,
Text[Style["\!\(\*SubscriptBox[\(E\), \(in\)]\)", Black, Bold, FontSize -> 16]]
}}]
, {k, 1, Dimensions[Eout][[1]]}];
ListAnimate[p1]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|