File:Ore theorem example.svg
Summary
| Description |
English: A graph illustrating Ore's theorem, that when all pairs of nonadjacent vertices have degrees summing to at least n, the graph has a Hamiltonian cycle. Here, the two degree-three vertices in the center are adjacent, and all other pairs of vertices have degrees summing to at least seven, the number of vertices. Because some vertices have fewer than n/2 neighbors, the conditions for the weaker Dirac theorem on Hamiltonian cycles are not met. A Hamiltonian cycle is highlighted. |
| Date | |
| Source | Own work |
| Author | David Eppstein |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|