File:MDKQ 3D.svg

Summary

Description
Deutsch: Fit einer 2D-Funktion
Date
Source Own work
Author Christian Schirm
Quellen
InfoField
Skript zur Bildgenerierung Erzeugungsskript, um die Grafik zu erstellen
Anleitung
InfoField
Benötigte Open-Source-Software:

Nach der Installation von Python den Quelltext in eine Datei mdkq.py kopieren und starten durch Doppelklicken oder in der Konsole durch Eingabe von

python mdkq.py
SVG development
InfoField
Source code
InfoField

Python code

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy

numpy.random.seed(3)
nMess = 18
x0 = numpy.random.rand(nMess)
x0 = x0-min(x0); x0 *= 10 / max(x0)
x1 = numpy.random.rand(nMess)*10
x1 = x1-min(x1); x1 *= 10 / max(x1)
y = numpy.random.randn(nMess)*10
x = numpy.array(list(zip(x0,x1)))

def base(x0, x1, n):
    return numpy.array([x0**i0.ravel() * x1**i1.ravel() for i0, i1 in numpy.mgrid[:n,:n].reshape(2,n*n).T]).T

nBasisProAchse = 3

A = base(x0, x1, nBasisProAchse)
c = numpy.linalg.inv(A.T @ A) @ A.T @ y

yModell = A @ c

x0neu, x1neu = numpy.meshgrid(numpy.linspace(0, 10, num=20), numpy.linspace(0, 10, num=20))
yneu = base(x0neu, x1neu, nBasisProAchse) @ c

fig = plt.figure(figsize=(4.5,4.5))
ax = fig.add_subplot(111, projection='3d')
p2 = ax.plot_wireframe(x1neu, x0neu, yneu, color='r', rstride=1, cstride=1, label='Modellfunktion', linewidth=1, zorder=0)
p1 = ax.scatter(x0, x1, y, label='Messpunkte', zorder=2)
for i in range(len(y)):
    ax.plot([x0[i]]*2, [x1[i]]*2, [y[i], yModell[i]], color='#60c060', linewidth=1.5, label='Residuum' if i==0 else None, zorder=1)
lx0 = ax.set_xlabel('x1')
lx1 = ax.set_ylabel('x2')
ly = ax.set_zlabel('y')
leg = plt.legend(frameon=True)
plt.tight_layout()
plt.show()
plt.savefig('MDKQ_3D.svg')

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#MDKQ%203D.svgCategory:Self-published work
Category:Regression analysis Category:Numerical analysis Category:NumPy Category:Surface plots Category:German-language diagrams
Category:CC-Zero Category:German-language diagrams Category:NumPy Category:Numerical analysis Category:Regression analysis Category:Self-published work Category:Surface plots Category:Valid SVG created with Matplotlib code