File:Julia IIM 6 circle.png

Summary

Description
English: Modified binary decomposition of dynamical plane for fc(z)=z*z
Source Own work
Author Adam majewski
Other versions

C src code

/* 
c console program
1. draws  Julia setfor Fc(z)=z*z +c using :
   	IIM
 	colors exterior of Julia set using modified decomposition
	dynamic 1D array for 24-bit color values
-------------------------------         
 2. technic of creating ppm file is  based on the code of Claudio Rocchini
 http://en.wikipedia.org/wiki/Image:Color_complex_plot.jpg
 create 24 bit color graphic file ,  portable pixmap file = PPM 
 see http://en.wikipedia.org/wiki/Portable_pixmap
 to see the file use external application ( graphic viewer)
 I think that manual creating graphic can't be simpler
------------------
 Adam Majewski  fraktal.republika.pl 
======================
Linux console : 
save as n.c
to compile :
gcc n.c -lm -Wall -march=native 
to run :
./a.out

Conversion to png is made with convert from ImageMagic
convert j.ppm -resize 2000x2000 j.png


*/

#include <stdio.h>
#include <stdlib.h> /* for ISO C Random Number Functions */
#include <math.h>

/*  gives sign of number */
double sign(double d)
{
      if (d<0)
       {return -1.0;}
       else {return 1.0;};
};

/*
 estimates distance from point c to nearest point in Julia  set 
 for Fc(z)= z*z + c
 z(n+1) = Fc(zn)  
 this function is based on function mndlbrot::dist  from  mndlbrot.cpp
 from program mandel by Wolf Jung (GNU GPL )
 http://www.mndynamics.com/indexp.html 
*/

int main()

{      const double Cx=0.0,Cy=0.0;
   /* screen coordinate = coordinate of pixels */      
    int iX, iY, 
    iXmin=0, iXmax=10000,
    iYmin=0, iYmax=10000,
    iWidth=iXmax-iXmin+1,
    iHeight=iYmax-iYmin+1,
   /* 3D data : X , Y, color */
   /* number of bytes = number of pixels of image * number of bytes of color */
   iLength=iWidth*iHeight*3,/* 3 bytes of color  */
   index; /* of array */
 /*  int iXinc, iYinc,iIncMax=12;     */
/* world ( double) coordinate = parameter plane*/
  const double ZxMin=-1.5;
  const double ZxMax=1.5;
  const double ZyMin=-1.5;
  const double ZyMax=1.5;
 /* */
 double PixelWidth=(ZxMax-ZxMin)/iWidth;
 double PixelHeight=(ZyMax-ZyMin)/iHeight;
 double Zx, Zy,    /* Z=Zx+Zy*i   */
       Z0x, Z0y,  /* Z0 = Z0x + Z0y*i */
       Zx2, Zy2, /* Zx2=Zx*Zx;  Zy2=Zy*Zy  */
       NewZx, NewZy,
       DeltaX, DeltaY,
       SqrtDeltaX, SqrtDeltaY,
       AlphaX, AlphaY,
       BetaX,BetaY, /* repelling fixed point Beta */
       AbsLambdaA,AbsLambdaB;
   /*  */
     int Iteration,
     IterationMax=6 , /*for modified loop  */
     iTemp;
    /* bail-out value , radius of circle ;  */
  // const int EscapeRadius=100;
   // int ER2=EscapeRadius*EscapeRadius;
    //double AR=PixelWidth; /* minimal distance from attractor = Attractor Radius */
          // AR2=AR*AR;
           //d,dX,dY; /*  distance from attractor : d=sqrt(dx*dx+dy*dy) */
  /* PPM file */
   FILE * fp;
   char *filename="j.ppm";
   char *comment="# this is julia set for c= ";/* comment should start with # */
    const int MaxColorComponentValue=255;/* color component ( R or G or B) is coded from 0 to 255 */
     /* dynamic 1D array for 24-bit color values */    
    unsigned char *array;

/*  ---------  find repelling fixed point ---------------------------------*/
  /* Delta=1-4*c */
   DeltaX=1-4*Cx;
   DeltaY=-4*Cy;
   /* SqrtDelta = sqrt(Delta) */
   /* sqrt of complex number algorithm from Peitgen, Jurgens, Saupe: Fractals for the classroom */
   if (DeltaX>0)
   {
    SqrtDeltaX=sqrt((DeltaX+sqrt(DeltaX*DeltaX+DeltaY*DeltaY))/2);
    SqrtDeltaY=DeltaY/(2*SqrtDeltaX);           }
    else /* DeltaX <= 0 */
    {
         if (DeltaX<0)
         {
          SqrtDeltaY=sign(DeltaY)*sqrt((-DeltaX+sqrt(DeltaX*DeltaX+DeltaY*DeltaY))/2);
          SqrtDeltaX=DeltaY/(2*SqrtDeltaY);        
          }
          else /* DeltaX=0 */
          {
           SqrtDeltaX=sqrt(fabs(DeltaY)/2);
           if (SqrtDeltaX>0) SqrtDeltaY=DeltaY/(2*SqrtDeltaX);
                    else SqrtDeltaY=0;    
         }
   };

   /* Beta=(1-sqrt(delta))/2 */
   BetaX=0.5+SqrtDeltaX/2;
   BetaY=SqrtDeltaY/2;
   /* Alpha=(1+sqrt(delta))/2 */
   AlphaX=0.5-SqrtDeltaX/2;
   AlphaY=-SqrtDeltaY/2;
   AbsLambdaA=2*sqrt(AlphaX*AlphaX+AlphaY*AlphaY);
   AbsLambdaB=2*sqrt(BetaX*BetaX+BetaY*BetaY);
   printf(" Cx= %f\n",Cx);
   printf(" Cy= %f\n",Cy); 
   printf(" Beta= %f , %f\n",BetaX,BetaY);
   //printf(" BetaY= %f\n",BetaY);
   printf(" Alpha= %f, %f\n",AlphaX,AlphaY);
   //printf(" AlphaY= %f\n",AlphaY);
   printf(" abs(Lambda (Alpha))= %f\n",AbsLambdaA);
   printf(" abs(lambda(Beta))= %f\n",AbsLambdaB);
  
/* -----------------------------------------------------------------*/    
   array = malloc( iLength * sizeof(unsigned char) );
    if (array == NULL)
    {
      fprintf(stderr,"Could not allocate memory");
      getchar();
      return 1;
    }
    else 
    {         
      /* fill the data array with white points */       
      for(index=0;index<iLength-1;++index) array[index]=255;
/* ---------------------------------------------------------------*/
      for(iY=0;iY<iYmax;++iY)
      {
          Z0y=ZyMin + iY*PixelHeight; /* reverse Y  axis */
             if (fabs(Z0y)<PixelHeight/2) Z0y=0.0; /*  */    
         for(iX=0;iX<iXmax;++iX)
         {    /* initial value of orbit Z0 */
           Z0x=ZxMin + iX*PixelWidth;
              /* Z = Z0 */
             Zx=Z0x;
              Zy=Z0y;
            Zx2=Zx*Zx;
              Zy2=Zy*Zy;
             /*----------- modified loop without checking of abs(zn)  -------------*/
             for (Iteration=0;Iteration<IterationMax;Iteration++)
                   {
                        Zy=2*Zx*Zy + Cy;
                        Zx=Zx2-Zy2 +Cx;
                        Zx2=Zx*Zx;
                        Zy2=Zy*Zy;
                    };
           iTemp=((iYmax-iY-1)*iXmax+iX)*3;        
           /* --------------- compute  pixel color (24 bit = 3 bajts) */
           /* exterior of Filled-in Julia set  */
          /* binary decomposition  */
                       if (Zy>0 ) 
                       { 
                         array[iTemp]=255; /* Red*/
                         array[iTemp+1]=255;  /* Green */ 
                         array[iTemp+2]=255;/* Blue */
                       }
                       if (Zy<0 )
                       {
                         array[iTemp]=0; /* Red*/
                         array[iTemp+1]=0;  /* Green */ 
                         array[iTemp+2]=0;/* Blue */    
                       };    
/* ------------------- check the orientation of Z-plane by marking first quadrant of cartesian plane ----- */
   //  if (Z0x>0 && Z0y>0) array[((iYmax-iY-1)*iXmax+iX)*3]=255-array[((iYmax-iY-1)*iXmax+iX)*3];  
     }
    } 
 /*-------------------- draw julia set using IIM/J ------------------------------------------*/ 
 	/* initial value of orbit Z=Z0 is repelling fixed point */
              	Zy=BetaY; 
   		Zx=BetaX; 
        	 for (Iteration=0;Iteration<10000000;Iteration++)
                        {
                            /* Zn*Zn=Z(n+1)-c */
                            Zx=Zx-Cx;
                            Zy=Zy-Cy;
                            /* sqrt of complex number algorithm from Peitgen, Jurgens, Saupe: Fractals for the classroom */
                            if (Zx>0)
                            {
                             NewZx=sqrt((Zx+sqrt(Zx*Zx+Zy*Zy))/2);
                             NewZy=Zy/(2*NewZx);        
                             }
                             else /* ZX <= 0 */
                             {
                              if (Zx<0)
                                 {
                                  NewZy=sign(Zy)*sqrt((-Zx+sqrt(Zx*Zx+Zy*Zy))/2);
                                  NewZx=Zy/(2*NewZy);        
                                  }
                                  else /* Zx=0 */
                                  {
                                   NewZx=sqrt(fabs(Zy)/2);
                                   if (NewZx>0) NewZy=Zy/(2*NewZx);
                                      else NewZy=0;    
                                    }
                             };
                          if (rand()<(RAND_MAX/2))
                          {   
                              Zx=NewZx;
                              Zy=NewZy; 
                              }
                          else {Zx=-NewZx;
                              Zy=-NewZy; }
                          /* translate from world to screen coordinate */
                        //  iX=(Zx-ZxMin)/PixelWidth;
                        //  iY=(ZyMax-Zy)/PixelHeight; /* reverse Y  axis */
          		iX=(Zx-ZxMin)/PixelWidth;
  			iY=(Zy-ZyMin)/PixelHeight; /*  */		
                          /* plot  pixel =  boundary of Filled-in Julia set  =  Julia set*/
        		  iTemp=((iYmax-iY-1)*iXmax+iX)*3;     
                          array[iTemp]=255; /* Red*/
                      	  array[iTemp+1]=0;  /* Green */ 
                          array[iTemp+2]=0;/* Blue */
                        };            
/* ---------------------  write the whole data array to ppm file in one step ----------------------------------------- */      
      /*create new file,give it a name and open it in binary mode  */
      fp= fopen(filename,"wb"); /* b -  binary mode */
      if (fp == NULL){ fprintf(stderr,"file error"); }
            else
            {
            /*write ASCII header to the file*/
            fprintf(fp,"P6\n %s\n %d\n %d\n %d\n",comment,iXmax,iYmax,MaxColorComponentValue);
           /*write image data bytes to the file*/
            fwrite(array,iLength ,1,fp);
            fclose(fp);
            fprintf(stderr,"file %s saved\n",filename);
            //getchar();
            }
      free(array);
      return 0;
    } /* if (array ..  else ... */
}

Compare with

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0#Julia%20IIM%206%20circle.png
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
Category:License migration redundant#Julia%20IIM%206%20circle.pngCategory:GFDL#Julia%20IIM%206%20circle.png
You may select the license of your choice.
Category:Self-published work Category:Long file description pages with source data Category:Circle Julia sets Category:Complex quadratic map Category:Images with Image Magic source code Category:Moiré Category:Images with C source code Category:Black and white fractals Category:Siemens star
Category:Black and white fractals Category:CC-BY-SA-3.0 Category:Circle Julia sets Category:Complex quadratic map Category:GFDL Category:Images with C source code Category:Images with Image Magic source code Category:License migration redundant Category:Long file description pages with source data Category:Moiré Category:Pages using deprecated source tags Category:Self-published work Category:Siemens star