File:Covariantcomponents.gif

Summary

Description
English: Covariant and contravariant components of a vector when the basis is not orthogonal.
Date
Source https://twitter.com/j_bertolotti/status/1071417492692709376
 
This diagram was created with Mathematica.
Category:PNG created with Mathematica#Covariantcomponents.gif
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 11.0 code

line[p1_, p2_] := 
  Block[{m, q}, {m, q} /. 
    Solve[{p1[[2]] == m p1[[1]] + q, p2[[2]] == m p2[[1]] + q}, {m, 
       q}][[1]]];
intersection[l1_, l2_] := 
  Block[{x, y}, {x, y} /. 
    Solve[{y == l1[[1]] x + l1[[2]], y == l2[[1]] x + l2[[2]]}, {x, 
       y}][[1]] ];
parallel[l1_, p1_] := {l1[[1]], p1[[2]] - l1[[1]] p1[[1]]};
normal[l1_, p1_] := {-1/l1[[1]], p1[[2]] + 1/l1[[1]] p1[[1]]};
o = {0, 0};
pe1 = {1, 10^-5}/Norm[{1, 0.1}];
v = {2.1, 1};
plots = Table[
   pe2 = {10^-5 + j, 1}/Norm[{10^-5 + j, 1}];
   GraphicsRow[{
     Graphics[{
       Thick, Dashed, Gray, Line[{o, 3 pe1}], Line[{o, 3*pe2}], 
       Line[{v, 
         intersection[normal[line[o, pe1], v], line[o, pe1]]}], 
       Line[{v, 
         intersection[normal[line[o, pe2], v], line[o, pe2] ]}]
       ,
       Dashing[None], Black, Arrow[{o, pe1}], Arrow[{o, pe2}], Blue, 
       Arrow[{o, v}]
       ,
       Black, Disk[o, 0.05], 
       Disk[intersection[normal[line[o, pe2], v], line[o, pe2] ], 
        0.05], Disk[
        intersection[normal[line[o, pe1], v], line[o, pe1] ], 0.05],
       Text[Style["O", Bold, FontSize -> 14], o - {0.2, 0.2}], 
       Text[Style[
         "\!\(\*SubscriptBox[OverscriptBox[\(e\), \(^\)], \(x\)]\)", 
         Bold, FontSize -> 14], pe1 - {0, 0.15}], 
       Text[Style[
         "\!\(\*SubscriptBox[OverscriptBox[\(e\), \(^\)], \(y\)]\)", 
         Bold, FontSize -> 14], pe2 + {0, 0.15}], 
       Text[Style["\!\(\*SubscriptBox[\(v\), \(x\)]\)", Bold, 
         FontSize -> 14], 
        intersection[normal[line[o, pe1], v], line[o, pe1] ] + {0.2, 
          0.2}], Text[
        Style["\!\(\*SubscriptBox[\(v\), \(y\)]\)", Bold, 
         FontSize -> 14], 
        intersection[normal[line[o, pe2], v], line[o, pe2] ] + {0.1, 
          0.2}],
       Blue, 
       Text[Style["\!\(\*OverscriptBox[\(v\), \(\[Rule]\)]\)", Bold, 
         FontSize -> 14], v + {0.1, 0.1}]
       }, PlotRange -> {{-0.5, 2.5}, {-0.5, 2}}, 
      PlotLabel -> "Covariant components", 
      LabelStyle -> {Black, Bold}, ImageSize -> Medium]
     ,
     Graphics[{
       Thick, Dashed, Gray, Line[{o, 3 pe1}], Line[{o, 3*pe2}], 
       Line[{v, 
         intersection[parallel[line[o, pe1], v], line[o, pe2]]}], 
       Line[{v, 
         intersection[parallel[line[o, pe2], v], line[o, pe1] ]}]
       ,
       Dashing[None], Black, Arrow[{o, pe1}], Arrow[{o, pe2}], Blue, 
       Arrow[{o, v}]
       ,
       Black, Disk[o, 0.05], 
       Disk[intersection[parallel[line[o, pe1], v], line[o, pe2] ], 
        0.05], Disk[
        intersection[parallel[line[o, pe2], v], line[o, pe1] ], 
        0.05],
       Text[Style["O", Bold, FontSize -> 14], o - {0.2, 0.2}], 
       Text[Style[
         "\!\(\*SubscriptBox[OverscriptBox[\(e\), \(^\)], \(x\)]\)", 
         Bold, FontSize -> 14], pe1 - {0, 0.15}], 
       Text[Style[
         "\!\(\*SubscriptBox[OverscriptBox[\(e\), \(^\)], \(y\)]\)", 
         Bold, FontSize -> 14], pe2 + {0, 0.15}], 
       Text[Style["\!\(\*SubscriptBox[\(v\), \(x\)]\)", Bold, 
         FontSize -> 14], 
        intersection[parallel[line[o, pe2], v], line[o, pe1] ] + {0.2,
           0.2}], Text[
        Style["\!\(\*SubscriptBox[\(v\), \(y\)]\)", Bold, 
         FontSize -> 14], 
        intersection[parallel[line[o, pe1], v], line[o, pe2] ] + {0.1,
           0.2}],
       Blue, 
       Text[Style["\!\(\*OverscriptBox[\(v\), \(\[Rule]\)]\)", Bold, 
         FontSize -> 14], v + {0.1, 0.1}]
       }, PlotRange -> {{-0.5, 2.5}, {-0.5, 2}}, 
      PlotLabel -> "Contravariant components", 
      LabelStyle -> {Black, Bold}]
     }]
   , {j, 0, 1.8, 0.05}];
ListAnimate[Join[plots, Reverse@plots]]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Covariantcomponents.gif
Category:Self-published work
This file, which was originally posted to https://twitter.com/j_bertolotti/status/1030470604418428929, was reviewed on 10 December 2018 by reviewer Ronhjones, who confirmed that it was available there under the stated license on that date.
Category:Files from external sources with reviewed licenses#Covariantcomponents.gif Category:Change of basis Category:Animations of special relativity Category:Animated GIF files Category:Decomposition of vectors
Category:Animated GIF files Category:Animations of special relativity Category:CC-Zero Category:Change of basis Category:Decomposition of vectors Category:Files from external sources with reviewed licenses Category:PNG created with Mathematica Category:Self-published work