File:Black-Scholes surface plot with random paths.svg

Summary

Description
English: Desc

Python

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# Define parameters
K = 1.0
sigma = 0.2
T = 1
x = np.linspace(-0.5, 0.5, 100)  
tau = np.linspace(0.0001, T, 100)
X, TAU = np.meshgrid(x, tau)

def black_scholes(x, tau):
    d_plus = (1 / (sigma * np.sqrt(tau))) * (x + 0.5 * sigma**2 * tau + 0.5 * sigma**2 * tau)
    d_minus = (1 / (sigma * np.sqrt(tau))) * (x + 0.5 * sigma**2 * tau - 0.5 * sigma**2 * tau)
    u = K * (np.exp(x + 0.5 * sigma**2 * tau) * norm.cdf(d_plus) - norm.cdf(d_minus))
    return u

fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(projection='3d')

K = 1.0
sigma = 0.05
num_walks = 10
starting_points = [-0.2, -0.1, 0, 0.1, 0.2]
num_starting_points = len(starting_points)
num_points = 1000
t_values = np.linspace(1e-4, 1, num_points)

brownian_walks = np.zeros((num_starting_points, num_walks, num_points))
for i in range(num_starting_points):
    for j in range(num_walks):
        dt = 1 / num_points
        dW = np.random.normal(0, np.sqrt(dt), num_points)
        brownian_walks[i, j] = np.cumsum(dW) * sigma + starting_points[i]

for i in range(num_starting_points):
    for j in range(num_walks):
        B_t = brownian_walks[i,j]
        S_t = np.exp(B_t)-1
        S_t = S_t[::-1]
        ax.plot(T-t_values, S_t, black_scholes(S_t, t_values), color='w', alpha=0.2)

ax.plot_surface(T-TAU, X, black_scholes(X, TAU), cmap='viridis')

ax.set_ylabel(r'$(S-C)}} )
ax.set_xlabel(r'$t}})
ax.set_zlabel(r'$V(S, t)}})
ax.view_init(elev=20, azim=0, roll=0)

plt.savefig("black_scholes_surface.svg")
plt.show()

Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Black-Scholes%20surface%20plot%20with%20random%20paths.svg
Category:Self-published work Category:Created with Matplotlib Category:Black–Scholes model
Category:Black–Scholes model Category:CC-BY-SA-4.0 Category:Created with Matplotlib Category:Self-published work