File:Anharmonic oscillators solutions.svg
Summary
| Description |
English: solution to several anharmonic oscillator problems |
| Date | |
| Source | Own work |
| Author | Jkrieger |
| Other versions |
![]() |
Sourcecode
Note: This script need the plot2svg() function package by Juerg Schwizer!
Source code
MATLAB code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% three function files
function [ dy ] = harmonic( t,y,m,k,l,c )
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-(c*y(2)+k*y(1))/m;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ dy ] = anharmonicA( t,y,m,k,l,c )
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-(c*y(2)+k*y(1)+l*y(1)^2)/m;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ dy ] = anharmonicB( t,y,m,k,l,c )
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-(c*y(2)+k*y(1)+l*y(1)^3)/m;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% main script
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
addpath('plot2svg');
m=1;
k=1;
l=0.2;
c=0;
x0=0.2;
x01=2.4;
x02=0;
p02=2;
p0=0;
PSX0range=0:(0.4):(2.4);
PSRange=[-4.5 4.5];
dy=@(t,y) anharmonicA(t,y,m,k,l,c);
dyB=@(t,y) anharmonicB(t,y,m,k,l,c);
dyh=@(t,y) harmonic(t,y,m,k,l,c);
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]);
h=figure(1);
subplot(3,2,1);
[T,Y] = ode45(dy,[0 40],[x0, p0],options);
[Th,Yh] = ode45(dyh,[0 40],[x0, p0],options);
[TB,YB] = ode45(dyB,[0 40],[x0, p0],options);
plot(Th,Yh(:,1), 'b-', T,Y(:,1),'r-', TB,YB(:,1),'g-');
ylim([-1.5 1.5]*x0);
xlabel('Zeit t');
ylabel('Ort x(t)');
title(['\bf Trajektorie für kleine Anfangsauslenkung (x_0=' num2str(x0) ', p_0=0)']);
subplot(3,2,2);
for x0=PSX0range
[Th,Yh] = ode45(dyh,[0 10],[x0, p0],options);
plot(Yh(:,1),Yh(:,2), 'b-');
if x0==PSX0range(1)
hold on
end
end
hold off
xlim(PSRange);
ylim(PSRange);
daspect([1 1 1]);
xlabel('position x');
ylabel('impulse p');
title(['\bf Phasenraum-Plot, harmonischer Oszillator']);
subplot(3,2,3);
[T,Y] = ode45(dy,[0 40],[x01, p0],options);
[Th,Yh] = ode45(dyh,[0 40],[x01, p0],options);
[TB,YB] = ode45(dyB,[0 40],[x01, p0],options);
plot(Th,Yh(:,1), 'b-', T,Y(:,1),'r-', TB,YB(:,1),'g-');
xlabel('Zeit t');
ylabel('Ort x(t)');
title(['\bf Trajektorie für große Anfangsauslenkung (x_0=' num2str(x01) ', p_0=0)']);
ylim([-2 2]*x01);
subplot(3,2,4);
for x0=PSX0range
[T,Y] = ode45(dy,[0 10],[x0, p0],options);
plot(Y(:,1),Y(:,2), 'r-');
if x0==PSX0range(1)
hold on
end
end
hold off
xlim(PSRange);
ylim(PSRange);
daspect([1 1 1]);
xlabel('Ort x');
ylabel('Impuls p');
title(['\bf Phasenraum-Plot, asymmetrisches Kraftgesetz']);
subplot(3,2,5);
[T,Y] = ode45(dy,[0 40],[x02, p02],options);
[Th,Yh] = ode45(dyh,[0 40],[x02, p02],options);
[TB,YB] = ode45(dyB,[0 40],[x02, p02],options);
plot(Th,Yh(:,1), 'b-', T,Y(:,1),'r-', TB,YB(:,1),'g-', [0 40], [2 2], 'b:', [0 40], -[2 2], 'b:');
xlabel('Zeit t');
ylabel('Ort x(t)');
title(['\bf Trajektorie bei gleicher Energie (x_0=' num2str(x02) ', p_0=' num2str(p02) ')' ]);
ylim([-2.5 2.5]);
subplot(3,2,6);
for x0=PSX0range
[TB,YB] = ode45(dyB,[0 10],[x0, p0],options);
plot(YB(:,1),YB(:,2), 'g-');
if x0==PSX0range(1)
hold on
end
end
hold off
xlim(PSRange);
ylim(PSRange);
daspect([1 1 1]);
xlabel('Ort x');
ylabel('Impuls p');
title(['\bf Phasenraum-Plot, symmetrisches Kraftgesetz']);
% uses the plot2svg tool from MatlabCentral by Juerg Schwizer
plot2svg('anharmonic_oscillators_solutions.svg', h)
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
