File:Anharmonic oscillators solutions.svg

Summary

Description
English: solution to several anharmonic oscillator problems
Date
Source Own work
Author Jkrieger
Other versions

Sourcecode

Note: This script need the plot2svg() function package by Juerg Schwizer!

Source code

MATLAB code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% three function files 
function [ dy ] = harmonic( t,y,m,k,l,c )
%UNTITLED3 Summary of this function goes here
%   Detailed explanation goes here
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-(c*y(2)+k*y(1))/m;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ dy ] = anharmonicA( t,y,m,k,l,c )
%UNTITLED3 Summary of this function goes here
%   Detailed explanation goes here
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-(c*y(2)+k*y(1)+l*y(1)^2)/m;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ dy ] = anharmonicB( t,y,m,k,l,c )
%UNTITLED3 Summary of this function goes here
%   Detailed explanation goes here
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-(c*y(2)+k*y(1)+l*y(1)^3)/m;
end



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% main script
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
addpath('plot2svg');

m=1;
k=1;
l=0.2;
c=0;
x0=0.2;
x01=2.4;
x02=0;
p02=2;
p0=0;

PSX0range=0:(0.4):(2.4);

PSRange=[-4.5 4.5];
 
 
 
dy=@(t,y) anharmonicA(t,y,m,k,l,c);
dyB=@(t,y) anharmonicB(t,y,m,k,l,c);
dyh=@(t,y) harmonic(t,y,m,k,l,c);
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]);
 
 
h=figure(1);
subplot(3,2,1);
[T,Y] = ode45(dy,[0 40],[x0, p0],options);
[Th,Yh] = ode45(dyh,[0 40],[x0, p0],options);
[TB,YB] = ode45(dyB,[0 40],[x0, p0],options);
plot(Th,Yh(:,1), 'b-', T,Y(:,1),'r-', TB,YB(:,1),'g-');
ylim([-1.5 1.5]*x0);
xlabel('Zeit t');
ylabel('Ort x(t)');
title(['\bf Trajektorie für kleine Anfangsauslenkung (x_0=' num2str(x0) ', p_0=0)']);
 
subplot(3,2,2);
for x0=PSX0range
    [Th,Yh] = ode45(dyh,[0 10],[x0, p0],options);
    plot(Yh(:,1),Yh(:,2), 'b-');
    if x0==PSX0range(1)
        hold on
    end
end
hold off
xlim(PSRange);
ylim(PSRange);
daspect([1 1 1]);
xlabel('position x');
ylabel('impulse p');
title(['\bf Phasenraum-Plot, harmonischer Oszillator']);
 
 
subplot(3,2,3);
[T,Y] = ode45(dy,[0 40],[x01, p0],options);
[Th,Yh] = ode45(dyh,[0 40],[x01, p0],options);
[TB,YB] = ode45(dyB,[0 40],[x01, p0],options);
plot(Th,Yh(:,1), 'b-', T,Y(:,1),'r-', TB,YB(:,1),'g-');
xlabel('Zeit t');
ylabel('Ort x(t)');
title(['\bf Trajektorie für große Anfangsauslenkung (x_0=' num2str(x01) ', p_0=0)']);
ylim([-2 2]*x01);
subplot(3,2,4);
for x0=PSX0range
    [T,Y] = ode45(dy,[0 10],[x0, p0],options);
    plot(Y(:,1),Y(:,2), 'r-');
    if x0==PSX0range(1)
        hold on
    end
end
hold off
xlim(PSRange);
ylim(PSRange);
daspect([1 1 1]);
xlabel('Ort x');
ylabel('Impuls p');
title(['\bf Phasenraum-Plot, asymmetrisches Kraftgesetz']);
 
 
subplot(3,2,5);
[T,Y] = ode45(dy,[0 40],[x02, p02],options);
[Th,Yh] = ode45(dyh,[0 40],[x02, p02],options);
[TB,YB] = ode45(dyB,[0 40],[x02, p02],options);
plot(Th,Yh(:,1), 'b-', T,Y(:,1),'r-', TB,YB(:,1),'g-', [0 40], [2 2], 'b:', [0 40], -[2 2], 'b:');
xlabel('Zeit t');
ylabel('Ort x(t)');
title(['\bf Trajektorie bei gleicher Energie (x_0=' num2str(x02) ', p_0=' num2str(p02) ')' ]);
ylim([-2.5 2.5]);
subplot(3,2,6);
for x0=PSX0range
    [TB,YB] = ode45(dyB,[0 10],[x0, p0],options);
    plot(YB(:,1),YB(:,2), 'g-');
    if x0==PSX0range(1)
        hold on
    end
end
hold off
xlim(PSRange);
ylim(PSRange);
daspect([1 1 1]);
xlabel('Ort x');
ylabel('Impuls p');
title(['\bf Phasenraum-Plot, symmetrisches Kraftgesetz']);

% uses the plot2svg tool from MatlabCentral by Juerg Schwizer 
plot2svg('anharmonic_oscillators_solutions.svg', h)
Category:Theoretical physics Category:Phase space diagrams

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0#Anharmonic%20oscillators%20solutions.svgCategory:Self-published work
Category:CC-BY-SA-3.0 Category:Phase space diagrams Category:Self-published work Category:Theoretical physics Category:Valid SVG created with MATLAB code