File:Random matrix eigenvalues.gif
Summary
Description |
English: Eigenvalues of 4 classes of random matrices on the complex plane.
(I am using ~10³ 2x2 matrices, so any central limit theorem valid for large matrices do not really apply here) |
Date | |
Source | https://twitter.com/j_bertolotti/status/1294255802296016898 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.1 code
\[Lambda]random = {};
Do[m = 1/2 (RandomVariate[NormalDistribution[0, 1], {2, 2}] + I RandomVariate[NormalDistribution[0, 1], {2, 2}]);
AppendTo[\[Lambda]random, Eigenvalues[m]]; , {1000}];
\[Lambda]ortho = {};
Do[m = 1/2 (RandomVariate[NormalDistribution[0, 1], {2, 2}] + I RandomVariate[NormalDistribution[0, 1], {2, 2}]);
m = Orthogonalize[m]; AppendTo[\[Lambda]ortho, Eigenvalues[m]]; , {1000}];
\[Lambda]symp = {};
Do[m = 1/2 (RandomVariate[NormalDistribution[0, 1], {2, 2}] + I RandomVariate[NormalDistribution[0, 1], {2, 2}]);
m = m/Sqrt[Det[m]]; AppendTo[\[Lambda]symp, Eigenvalues[m]]; , {1000}];
\[Lambda]herm = {};
Do[m = 1/2 (RandomVariate[NormalDistribution[0, 1], {2, 2}] + I RandomVariate[NormalDistribution[0, 1], {2, 2}]);
m = (m + ConjugateTranspose[m])/2; AppendTo[\[Lambda]herm, Eigenvalues[m]]; , {1000}];
step[t_] := Ceiling[1000*t^2]
p0 = Table[
GraphicsGrid[{{
ListPlot[
Evaluate[{Re[#], Im[#]} & /@ Flatten[\[Lambda]random[[1 ;; step[t]]] ] ], PlotRange -> {{-3, 3}, {-3, 3}}, AspectRatio -> 1, AxesStyle -> {Black, Thick}, PlotMarkers -> {Graphics[{Orange, Disk[], Black, Circle[]}], 0.03 }, AxesLabel -> {"Re[\[Lambda]]", "Im[\[Lambda]]"}, LabelStyle -> {Black, Bold}, AxesStyle -> Black, PlotLabel -> "Gaussian noise"]
,
ListPlot[
Evaluate[{Re[#], Im[#]} & /@ Flatten[\[Lambda]ortho[[1 ;; step[t]]]] ], PlotRange -> {{-1.3, 1.3}, {-1.3, 1.3}}, AspectRatio -> 1, AxesStyle -> {Black, Thick}, PlotMarkers -> {Graphics[{Orange, Disk[], Black, Circle[]}], 0.03 }, AxesLabel -> {"Re[\[Lambda]]", "Im[\[Lambda]]"}, LabelStyle -> {Black, Bold}, AxesStyle -> Black, PlotLabel -> "Orthogonal/Unitary"]
}, {
ListPlot[
Evaluate[{Re[#], Im[#]} & /@ Flatten[\[Lambda]herm[[1 ;; step[t]]]] ], PlotRange -> {{-3, 3}, {-3, 3}}, AspectRatio -> 1, AxesStyle -> {Black, Thick}, PlotMarkers -> {Graphics[{Orange, Disk[], Black, Circle[]}], 0.03 }, AxesLabel -> {"Re[\[Lambda]]", "Im[\[Lambda]]"}, LabelStyle -> {Black, Bold}, AxesStyle -> Black, PlotLabel -> "Symmetric/Hermitian"]
,
ListPlot[
Evaluate[{Re[#], Im[#]} & /@ Flatten[\[Lambda]symp[[1 ;; step[t]]]] ], PlotRange -> {{-3, 3}, {-3, 3}}, AspectRatio -> 1, AxesStyle -> {Black, Thick}, PlotMarkers -> {Graphics[{Orange, Disk[], Black, Circle[]}], 0.03 }, AxesLabel -> {"Re[\[Lambda]]", "Im[\[Lambda]]"}, LabelStyle -> {Black, Bold}, AxesStyle -> Black, PlotLabel -> "Symplectic"]
}}, ImageSize -> 800]
, {t, 0.0001, 1, 0.01}];
ListAnimate[p0]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|