File:Mandelbrot numpy set 9.png

Summary

Description
Deutsch: Die Mandelbrot-Menge wird mit NumPy unter Verwendung komplexer Matrizen berechnet. Für die extreme Zoomtiefe der Mercator-Map wird eine von Kevin Martin und Zhuoran Yu vorgestellte Berechnungsmethode verwendet, die durch Parallelisierung mit Numba und durch bilineare Approximation extrem beschleunigt wird. Für noch mehr Geschwindigkeit oder noch extremere Zoomtiefen siehe das Python-Paket Fractalshades von Geoffroy Billotey.
English: The Mandelbrot set is computed with NumPy using complex matrices. For the extreme zoom depth of the Mercator map, a calculation method introduced by Kevin Martin and Zhuoran Yu is used, which is significantly accelerated by parallelization with Numba and by bilinear approximation. For even greater speed or even more extreme zoom depths, see the Python package Fractalshades by Geoffroy Billotey.
Date
Source Own work
Author Majow
Other versions
PNG development
InfoField
Source code
InfoField

Python code

import numba

import numpy as np
import matplotlib.pyplot as plt

import decimal as dc  # decimal floating point arithmetic with arbitrary precision
dc.getcontext().prec = 80  # set precision to 80 digits (about 256 bits)

d, h = 100, 2000  # pixel density (= image width) and image height
n, r = 100000, 100000.0  # number of iterations and escape radius (r > 2)

a = dc.Decimal("-1.256827152259138864846434197797294538253477389787308085590211144291")
b = dc.Decimal(".37933802890364143684096784819544060002129071484943239316486643285025")

S = np.zeros(n + 100, dtype=np.complex128)  # 100 iterations are chained
u, v = dc.Decimal(0), dc.Decimal(0)

for i in range(n + 100):
    S[i] = float(u) + float(v) * 1j
    if u * u + v * v < r * r:
        u, v = u * u - v * v + a, 2 * u * v + b
    else:
        print("The reference sequence diverges within %s iterations." % i)
        break

x = np.linspace(0, 2, num=d+1, dtype=np.float64)
y = np.linspace(0, 2 * h / d, num=h+1, dtype=np.float64)

A, B = np.meshgrid(x * np.pi, y * np.pi)
C = (- 8.0) * np.exp((A + B * 1j) * 1j)

@numba.njit(parallel=True, fastmath=True)
def iteration_numba_bla(S, C):
    I, J = np.zeros(C.shape, dtype=np.intp), np.zeros(C.shape, dtype=np.complex128)
    E, Z, dZ = np.zeros_like(C), np.zeros_like(C), np.zeros_like(C)

    def iteration(S, dS, R, A, B, C):
        I, J = np.zeros(C.shape, dtype=np.intp), np.zeros(C.shape, dtype=np.complex128)
        E, Z, dZ = np.zeros_like(C), np.zeros_like(C), np.zeros_like(C)

        def abs2(z):
            return z.real * z.real + z.imag * z.imag

        def iterate2(delta, index, epsilon, z, dz):
            index, epsilon = index + 1, (2 * S[index] + epsilon) * epsilon + delta
            z, dz = S[index] + epsilon, 2 * z * dz + 1
            index, epsilon = index + 1, (2 * S[index] + epsilon) * epsilon + delta
            z, dz = S[index] + epsilon, 2 * z * dz + 1
            return index, epsilon, z, dz

        def skip100(delta, index, e, z, dz):
            de = dz - dS[index]  # no catastrophic cancellation (don't try that with e)
            # for l in range(100):  # skip 100 iterations
            #     index, e, de = index + 1, 2 * S[index] * e + delta, 2 * S[index] * de
            index, e, de = index + 100, A[index] * e + B[index] * delta, A[index] * de
            z, dz = S[index] + e, dS[index] + de
            return index, e, z, dz

        for k in range(len(C)):
            delta, index, epsilon, z, dz = C[k], I[k], E[k], Z[k], dZ[k]

            i, j = 0, 0
            while i + j < n:
                if abs2(z) < abs2(r):
                    if abs2(epsilon) < abs2(1e-10 * R[index]):
                        index, epsilon, z, dz = skip100(delta, index, epsilon, z, dz)
                        j = j + 100
                    else:
                        if abs2(z) < abs2(epsilon):
                            index, epsilon = 0, z  # reset the reference orbit
                        index, epsilon, z, dz = iterate2(delta, index, epsilon, z, dz)
                        i = i + 2
                else:
                    break

            I[k], E[k], Z[k], dZ[k], J[k] = index, epsilon, z, dz, complex(i + j, j)

        return I, E, Z, dZ, J

    dS, aS = np.zeros(n + 100, dtype=np.complex128), np.zeros(n + 100, dtype=np.float64)
    A, B = np.ones(n, dtype=np.complex128), np.zeros(n, dtype=np.complex128)
    R = np.ones(n, dtype=np.float64)

    for i in range(1, n + 100):
        dS[i], aS[i] = 2 * S[i - 1] * dS[i - 1] + 1, abs(S[i])  # accuracy isn't required

    for i in numba.prange(n):
        for l in range(100):
            A[i], B[i] = 2 * S[i + l] * A[i], 2 * S[i + l] * B[i] + 1
            R[i] = min(aS[i + l], R[i])  # validity radii (0 to 1)

    for j in numba.prange(C.shape[1]):
        I[:, j], E[:, j], Z[:, j], dZ[:, j], J[:, j] = iteration(S, dS, R, A, B, C[:, j])

    return I, E, Z, dZ, J

I, E, Z, dZ, J = iteration_numba_bla(S, C)
D = np.zeros(C.shape, dtype=np.float64)

skipped = J.imag.sum() / J.real.sum()
print("%.1f%% of all iterations were skipped." % (skipped * 100))

fig = plt.figure(figsize=(12.8, 1.6))
fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95)

N = abs(Z) > 2  # exterior distance estimation
D[N] = np.log(abs(Z[N])) * abs(Z[N]) / abs(dZ[N])

ax1 = fig.add_subplot(1, 1, 1)
ax1.imshow(D.T ** 0.015, cmap=plt.cm.gist_ncar, origin="lower")

fig.savefig("Mandelbrot_numpy_set_9.png", dpi=200)

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Mandelbrot%20numpy%20set%209.pngCategory:Self-published work
Category:Mandelbrot sets - Mercator projection Category:NumPy Category:German text
Category:CC-Zero Category:German text Category:Mandelbrot sets - Mercator projection Category:NumPy Category:PNG created with Matplotlib code Category:Self-published work