File:Mandelbrot numpy set 5.png

Summary

Description
Deutsch: Die Mandelbrot-Menge wird mit NumPy unter Verwendung komplexer Matrizen berechnet. Es wird eine von Adam Saka popularisierte und von Adam Majewski beschriebene Hillshading-Methode verwendet. Diese Technik erzeugt die Illusion dreidimensionaler Stufen.
English: The Mandelbrot set is calculated with NumPy using complex matrices. A hillshading method popularized by Adam Saka and described by Adam Majewski is used. This technique creates the illusion of three-dimensional steps.
Date
Source Own work
Author Majow
Other versions
PNG development
InfoField
Source code
InfoField

Python code

import numpy as np
import matplotlib.pyplot as plt

d, h = 500, 600  # pixel density (= image width) and image height
n, r = 200, 500  # number of iterations and escape radius (r > 2)

direction, height = 45.0, 1.5  # direction and height of the light

x = np.linspace(0, 2, num=d+1)
y = np.linspace(0, 2 * h / d, num=h+1)

A, B = np.meshgrid(x - 1, y - h / d)
C = (2.0 + 1.0j) * (A + B * 1j) - 0.5

def iteration(C):
    Z, dZ = np.zeros_like(C), np.zeros_like(C)

    def iterate(C, Z, dZ):
        Z, dZ = Z * Z + C, 2 * Z * dZ + 1
        return Z, dZ

    for i in range(n):
        M = abs(Z) < r
        Z[M], dZ[M] = iterate(C[M], Z[M], dZ[M])

    return Z, dZ

Z, dZ = iteration(C)
D, S = np.zeros(C.shape), np.zeros(C.shape)

fig = plt.figure(figsize=(12.8, 9.6))
fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95)

N = abs(Z) >= r  # blended normal map effect and linear steps (potential function)
U, V = Z[N] / dZ[N], np.log2(np.log(np.abs(Z[N])) / np.log(r))
U, v = U / abs(U), np.exp(direction / 180 * np.pi * 1j)  # unit normal vectors and light vector
D[N], S[N] = np.maximum((U.real * v.real + U.imag * v.imag + height) / (1 + height), 0), V

ax1 = fig.add_subplot(2, 3, 1)
ax1.imshow(D ** 1.0, cmap=plt.cm.gray, origin="lower")

ax2 = fig.add_subplot(2, 3, 2)
ax2.imshow(S ** 1.0, cmap=plt.cm.gray, origin="lower")

ax3 = fig.add_subplot(2, 3, 3)
ax3.imshow((D + S) ** 1.0, cmap=plt.cm.gray, origin="lower")

N = abs(Z) >= r  # blended normal map effect and linear steps (potential function)
U, V = Z[N] / dZ[N], np.maximum(1 - np.log2(np.log(np.abs(Z[N])) / np.log(r)), 0)
U, v = U / abs(U), np.exp(direction / 180 * np.pi * 1j)  # unit normal vectors and light vector
D[N], S[N] = np.maximum((U.real * v.real + U.imag * v.imag + height) / (1 + height), 0), V

ax4 = fig.add_subplot(2, 3, 4)
ax4.imshow(D ** 1.0, cmap=plt.cm.gray, origin="lower")

ax5 = fig.add_subplot(2, 3, 5)
ax5.imshow(S ** 1.0, cmap=plt.cm.gray, origin="lower")

ax6 = fig.add_subplot(2, 3, 6)
ax6.imshow((D + S) ** 1.0, cmap=plt.cm.gray, origin="lower")

fig.savefig("Mandelbrot_numpy_set_5.png", dpi=200)

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Mandelbrot%20numpy%20set%205.pngCategory:Self-published work
Category:Mandelbrot sets (whole) Category:NumPy Category:German text Category:Images with Python source code Category:Mandelbrot sets by algorithm Category:Mandelbrot sets - static images
Category:CC-Zero Category:German text Category:Images with Python source code Category:Mandelbrot sets (whole) Category:Mandelbrot sets - static images Category:Mandelbrot sets by algorithm Category:NumPy Category:PNG created with Matplotlib code Category:Self-published work