File:Mandelbrot numpy set 2.png

Summary

Description
Deutsch: Die Mandelbrot-Menge wird mit NumPy unter Verwendung komplexer Matrizen berechnet. Die verwendeten Färbungen werden von Arnaud Chéritat und Jussi Härkönen beschrieben: Normal Map Effect und Stripe Average Coloring.
English: The Mandelbrot set is calculated with NumPy using complex matrices. The colorings used are described by Arnaud Chéritat and Jussi Härkönen: Normal Map Effect and Stripe Average Coloring.
Date
Source Own work
Author Majow
Other versions
PNG development
InfoField
Source code
InfoField

Python code

import numpy as np
import matplotlib.pyplot as plt

d, h = 800, 600  # pixel density (= image width) and image height
n, r = 200, 500  # number of iterations and escape radius (r > 2)

direction, height = 45.0, 1.5  # direction and height of the light
density, intensity = 4.0, 0.5  # density and intensity of the stripes

x = np.linspace(0, 2, num=d+1)
y = np.linspace(0, 2 * h / d, num=h+1)

A, B = np.meshgrid(x - 1, y - h / d)
C = (1.5 + 1.0j) * (A + B * 1j) - 0.5

def iteration(C):
    S, T = np.zeros(C.shape), np.zeros(C.shape)
    Z, dZ, ddZ = np.zeros_like(C), np.zeros_like(C), np.zeros_like(C)

    def iterate(C, S, T, Z, dZ, ddZ):
        S, T = S + np.sin(density * np.angle(Z)), T + 1
        Z, dZ, ddZ = Z * Z + C, 2 * Z * dZ + 1, 2 * (dZ * dZ + Z * ddZ)
        return S, T, Z, dZ, ddZ

    for i in range(n):
        M = abs(Z) < r
        S[M], T[M], Z[M], dZ[M], ddZ[M] = iterate(C[M], S[M], T[M], Z[M], dZ[M], ddZ[M])

    return S, T, Z, dZ, ddZ

S, T, Z, dZ, ddZ = iteration(C)
D = np.zeros(C.shape)

fig = plt.figure(figsize=(12.8, 4.8))
fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95)

N = abs(Z) >= r  # basic normal map effect and stripe average coloring (potential function)
P, Q = S[N] / T[N], (S[N] + np.sin(density * np.angle(Z[N]))) / (T[N] + 1)
U, V = Z[N] / dZ[N], 1 + (np.log2(np.log(abs(Z[N])) / np.log(r)) * (P - Q) + Q) * intensity
U, v = U / abs(U), np.exp(direction / 180 * np.pi * 1j)  # unit normal vectors and light vector
D[N] = np.maximum((U.real * v.real + U.imag * v.imag + V * height) / (1 + height), 0)

ax1 = fig.add_subplot(1, 2, 1)
ax1.imshow(D ** 1.0, cmap=plt.cm.bone, origin="lower")

N = abs(Z) > 2  # advanced normal map effect using higher derivatives (distance estimation)
H, K, L = abs(Z[N] / dZ[N]), abs(dZ[N] / ddZ[N]), np.log(abs(Z[N]))
U = Z[N] / dZ[N] - (H / K) ** 2 * L / (1 + L) * dZ[N] / ddZ[N]
U, v = U / abs(U), np.exp(direction / 180 * np.pi * 1j)  # unit normal vectors and light vector
D[N] = np.maximum((U.real * v.real + U.imag * v.imag + height) / (1 + height), 0)

ax2 = fig.add_subplot(1, 2, 2)
ax2.imshow(D ** 1.0, cmap=plt.cm.afmhot, origin="lower")

fig.savefig("Mandelbrot_numpy_set_2.png", dpi=200)

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Mandelbrot%20numpy%20set%202.png
Category:Self-published work Category:Mandelbrot sets (whole) Category:NumPy Category:German text Category:Images with Python source code Category:Mandelbrot sets by algorithm Category:Mandelbrot sets - static images
Category:CC-Zero Category:German text Category:Images with Python source code Category:Mandelbrot sets (whole) Category:Mandelbrot sets - static images Category:Mandelbrot sets by algorithm Category:NumPy Category:PNG created with Matplotlib code Category:Self-published work