File:MDKQ anim0.svg

Summary

Description
Deutsch: Teilbild einer Animation Polynomapproximation unterschiedlicher Polynomordnung
Date
Source Own work based on: MDKQ anim.gif
Author Johannes Kalliauer
Other versions
SVG development
InfoField
 The SVG code is valid.
 This diagram was created with an unknown SVG tool.
Category:Valid SVG created with Other tools:Diagrams#MDKQ%20anim0.svg

Licensing

Johannes Kalliauer, the copyright holder of this work, hereby publishes it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#MDKQ%20anim0.svgCategory:Self-published work

Quellen: Skript zur Bildgenerierung

Erzeugungsskript, um die Grafik zu erstellen.

Anleitung

Benötigte Open-Source-Software:

Nach der Installation von Python den Quelltext in eine Datei mdkq.py kopieren und starten durch Doppelklicken oder in der Konsole durch Eingabe von

python mdkq.py

Source code

The logo of Matplotlib – comprehensive library for creating static, animated, and interactive visualizations in Python
The logo of Matplotlib – comprehensive library for creating static, animated, and interactive visualizations in Python
This media was created with Matplotlib (comprehensive library for creating static, animated, and interactive visualizations in Python)Category:Images with Matplotlib source code
Here is a listing of the source used to create this file.

Deutsch  English  +/−

#This source code is public domain
import numpy, pylab
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from numpy.random import randn

x=[1,2,3,4,5,6,7]
y=[2.0,2.5,2.5,3.4,3.7,6.6,3]

for N in range(1,8):
   A=numpy.zeros((N,N))
   for i in range(N):
       for j in range(N):
           A[i,j]=sum(xi**(i+j) for xi in x)
   b=numpy.zeros((N))
   for i in range(N):
       b[i]=sum(xi**(i)*yi for xi,yi in zip(x,y))
   c=numpy.linalg.solve(A, b)
   xr=numpy.asarray(x)
   yr=numpy.sum([c[i]*xr**i for i in range(len(c))],axis=0)
   residuen=[]
   for i in range(len(x)): residuen+=[[xr[i],xr[i]],[y[i],yr[i]],'g-']
   xneu=numpy.linspace(0, 8, num=100)
   yneu=numpy.sum([c[i]*xneu**i for i in range(len(c))],axis=0)
   plt.clf()
   fig = plt.figure(figsize=(4.5, 3.5))
   fig.subplotpars.bottom=0.13
   y0=plt.plot(*residuen[:-3])
   plt.setp(y0, color='#80D080', linewidth=1.5)
   #y0=plt.plot(*residuen[-3:], label="Residuen")
   y0,=plt.plot(*residuen[-3:])
   plt.setp(y0, color='#80D080', linewidth=1.5)
   #y2=plt.plot(xneu,yneu,'r-', label="Modellfunktion")
   y2,=plt.plot(xneu,yneu,'r-')
   #y1=plt.plot(x,y,'o', label="Messpunkte")
   y1,=plt.plot(x,y,'o')
   plt.xlabel('x')
   plt.ylabel('y')
   font = FontProperties()
   font.set_size('medium')
   leg = plt.legend([y1,y2,y0],['Messpunkte','Modellfunktion','Residuen'],frameon=True,loc='lower right',labelspacing=0.3,prop=font)
   #leg = plt.legend(frameon=True,loc='lower right',labelspacing=0.3,prop=font)
   plt.grid(True)
   plt.axis([0, 8, 0, 8])
   plt.text(1,7, "Polynomgrad "+str(N-1),bbox=dict(boxstyle="square,pad=0.5",color='white',ec='black',fill=True))
   #plt.show()
   plt.savefig('MDKQ_anim%i.png'%N)
   plt.savefig('test.eps', format='eps', dpi=900)
   plt.savefig("MDKQ_anim%i.svg"%N)
Category:German-language diagrams Category:NumPy Category:Numerical analysis Category:Regression analysis Category:Uploaded by JoKalliauer
Category:CC-Zero Category:German-language diagrams Category:Images with Matplotlib source code Category:NumPy Category:Numerical analysis Category:Regression analysis Category:Self-published work Category:Uploaded by JoKalliauer Category:Valid SVG created with Other tools:Diagrams