File:MDKQ anim.gif
Summary
| Description |
Deutsch: Animation Polynomapproximation unterschiedlicher Polynomordnung |
| Date | |
| Source | Own work, Neufassung von File:Lsf.gif vom Benutzer en:User:J.N. |
| Author | Christian Schirm |
| Other versions |
Derivative works of this file: |
| GIF development | |
| Source code | Python code# This source code is public domain
import numpy
import matplotlib.pyplot as plt
import imageio
x = numpy.array([1,2,3,4,5,6,7])
y = numpy.array([2.0,2.5,2.5,3.4,3.7,6.6,3])
images = []
for nPoly in range(1,8):
phi = numpy.array([x**i for i in range(nPoly)])
A = phi @ phi.T
b = phi @ y
c = numpy.linalg.solve(A, b)
yPoly = c @ phi
residuen = []
for i in range(len(x)): residuen+=[[x[i],x[i]],[y[i],yPoly[i]],'g-']
xneu = numpy.linspace(0, 8, num=100)
yneu = numpy.sum([c[i]*xneu**i for i in range(len(c))],axis=0)
plt.clf()
fig = plt.figure(figsize=(4.2, 3.2), dpi=120)
fig.subplotpars.bottom=0.13
y0 = plt.plot(*residuen[:-3])
plt.setp(y0, color='#80d080', linewidth=1.5)
y0, = plt.plot(*residuen[-3:],label='Residuen')
plt.setp(y0, color='#80d080', linewidth=1.5)
y2, = plt.plot(xneu,yneu,'r-',label='Modellfunktion')
y1, = plt.plot(x,y,'o', label='Messpunkte')
plt.xlabel('x')
plt.ylabel('y')
order = y1,y2,y0
leg = plt.legend(order,[p.get_label() for p in order], frameon=True, loc='lower right')
plt.grid(True, alpha=0.7)
plt.axis([0, 8, 0, 8])
plt.text(1,7, "Polynomgrad "+str(nPoly-1),bbox = dict(boxstyle="square,pad=0.5",color='white',ec='black',fill=True))
plt.tight_layout()
# plt.savefig('MDKQ_anim%i.png'%N)
fig.canvas.draw()
s, (width, height) = fig.canvas.print_to_buffer()
images.append(numpy.array(list(s), numpy.uint8).reshape((height, width, 4)))
fig.clf()
plt.close('all')
# Save GIF animation
fileOut = 'MDKQ_animation.gif'
imageio.mimsave(fileOut, images, duration=[1,1,1,1,1,1,3])
# Optimize GIF size
from pygifsicle import optimize
optimize(fileOut, colors=16)
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|