File:Nimber products of powers of two; tensor.png

Summary

Description

Binary tensor showing the same information like File:Nimber products of powers of two.svg


Vertical and horizontal axes are like in the matrix, the binary numbers are shown in the depth, with the nearer places for the lower exponents.

 
This image was created with POV-Ray.
Category:Created with Persistence of Vision#Nimber%20products%20of%20powers%20of%20two;%20tensor.png
Date
Source Own work
Author
Watchduck
You can name the author as "T. Piesk", "Tilman Piesk" or "Watchduck".


POV-Ray source

#include "colors.inc"    

background {color White}                                                      
 
camera { angle 8
        location <65,45,-150>
        look_at  <7.6, 7.5, 8>  
        up    < 0, 1, 0>
        right   < 1, 0, 0>
       }
              
union
{     
        light_source { <50,30,20>
                       color White
                       shadowless
                     }    
         
         
        light_source { <-1,20,-2>
                       color Gray
                       shadowless
                     }      
                     
        light_source { <-40,-70,-20>
                       color White
                       shadowless
                     } 
translate<10,10,10>                 
}  
                      
// black cube 
difference{
           box {
                < -0.1,-0.1,-0.1>, 
                < 16.1,16.1,16.1>  
                pigment{color Black} 
               }
 
           union{
                 box{
                     < -8,-8,-8>, 
                     < 8,8,8>  
                     pigment{color Black}  
                     scale <1.02,0.995,0.995>
                    } 
                 box{
                     < -8,-8,-8>, 
                     < 8,8,8>  
                     pigment{color Black}  
                     scale <0.995,1.02,0.995>
                    }                     
                 box{
                     < -8,-8,-8>, 
                     < 8,8,8>  
                     pigment{color Black}  
                     scale <0.995,0.995,1.02>
                    } 
                 translate<8,8,8>                 
                }  
             no_reflection 
            }             
     
// red box                 
#declare a = box{ <0.98,15.98,0.98>, <0.02,15.02,0.02> pigment{color Red} };    
        
// puts red boxes        
#macro f(m,n,d)
        object{a translate<n,-m,d>}   
#end

 f(0,0,0)
 f(0,1,1)
 f(0,2,2)
 f(0,3,3)
 f(0,4,4)
 f(0,5,5)
 f(0,6,6)
 f(0,7,7)
 f(0,8,8)
 f(0,9,9)
 f(0,10,10)
 f(0,11,11)
 f(0,12,12)
 f(0,13,13)
 f(0,14,14)
 f(0,15,15)

 f(1,0,1)
 f(1,1,0) f(1,1,1)
 f(1,2,3)
 f(1,3,2) f(1,3,3)
 f(1,4,5)
 f(1,5,4) f(1,5,5)
 f(1,6,7)
 f(1,7,6) f(1,7,7)
 f(1,8,9)
 f(1,9,8) f(1,9,9)
 f(1,10,11)
 f(1,11,10) f(1,11,11)
 f(1,12,13)
 f(1,13,12) f(1,13,13)
 f(1,14,15)
 f(1,15,14) f(1,15,15)

 f(2,0,2)
 f(2,1,3)
 f(2,2,1) f(2,2,2)
 f(2,3,0) f(2,3,1) f(2,3,3)
 f(2,4,6)
 f(2,5,7)
 f(2,6,5) f(2,6,6)
 f(2,7,4) f(2,7,5) f(2,7,7)
 f(2,8,10)
 f(2,9,11)
 f(2,10,9) f(2,10,10)
 f(2,11,8) f(2,11,9) f(2,11,11)
 f(2,12,14)
 f(2,13,15)
 f(2,14,13) f(2,14,14)
 f(2,15,12) f(2,15,13) f(2,15,15)

 f(3,0,3)
 f(3,1,2) f(3,1,3)
 f(3,2,0) f(3,2,1) f(3,2,3)
 f(3,3,0) f(3,3,2) f(3,3,3)
 f(3,4,7)
 f(3,5,6) f(3,5,7)
 f(3,6,4) f(3,6,5) f(3,6,7)
 f(3,7,4) f(3,7,6) f(3,7,7)
 f(3,8,11)
 f(3,9,10) f(3,9,11)
 f(3,10,8) f(3,10,9) f(3,10,11)
 f(3,11,8) f(3,11,10) f(3,11,11)
 f(3,12,15)
 f(3,13,14) f(3,13,15)
 f(3,14,12) f(3,14,13) f(3,14,15)
 f(3,15,12) f(3,15,14) f(3,15,15)

 f(4,0,4)
 f(4,1,5)
 f(4,2,6)
 f(4,3,7)
 f(4,4,3) f(4,4,4)
 f(4,5,2) f(4,5,3) f(4,5,5)
 f(4,6,0) f(4,6,1) f(4,6,3) f(4,6,6)
 f(4,7,0) f(4,7,2) f(4,7,3) f(4,7,7)
 f(4,8,12)
 f(4,9,13)
 f(4,10,14)
 f(4,11,15)
 f(4,12,11) f(4,12,12)
 f(4,13,10) f(4,13,11) f(4,13,13)
 f(4,14,8) f(4,14,9) f(4,14,11) f(4,14,14)
 f(4,15,8) f(4,15,10) f(4,15,11) f(4,15,15)

 f(5,0,5)
 f(5,1,4) f(5,1,5)
 f(5,2,7)
 f(5,3,6) f(5,3,7)
 f(5,4,2) f(5,4,3) f(5,4,5)
 f(5,5,2) f(5,5,4) f(5,5,5)
 f(5,6,0) f(5,6,2) f(5,6,3) f(5,6,7)
 f(5,7,1) f(5,7,2) f(5,7,6) f(5,7,7)
 f(5,8,13)
 f(5,9,12) f(5,9,13)
 f(5,10,15)
 f(5,11,14) f(5,11,15)
 f(5,12,10) f(5,12,11) f(5,12,13)
 f(5,13,10) f(5,13,12) f(5,13,13)
 f(5,14,8) f(5,14,10) f(5,14,11) f(5,14,15)
 f(5,15,9) f(5,15,10) f(5,15,14) f(5,15,15)

 f(6,0,6)
 f(6,1,7)
 f(6,2,5) f(6,2,6)
 f(6,3,4) f(6,3,5) f(6,3,7)
 f(6,4,0) f(6,4,1) f(6,4,3) f(6,4,6)
 f(6,5,0) f(6,5,2) f(6,5,3) f(6,5,7)
 f(6,6,0) f(6,6,1) f(6,6,2) f(6,6,5) f(6,6,6)
 f(6,7,0) f(6,7,3) f(6,7,4) f(6,7,5) f(6,7,7)
 f(6,8,14)
 f(6,9,15)
 f(6,10,13) f(6,10,14)
 f(6,11,12) f(6,11,13) f(6,11,15)
 f(6,12,8) f(6,12,9) f(6,12,11) f(6,12,14)
 f(6,13,8) f(6,13,10) f(6,13,11) f(6,13,15)
 f(6,14,8) f(6,14,9) f(6,14,10) f(6,14,13) f(6,14,14)
 f(6,15,8) f(6,15,11) f(6,15,12) f(6,15,13) f(6,15,15)

 f(7,0,7)
 f(7,1,6) f(7,1,7)
 f(7,2,4) f(7,2,5) f(7,2,7)
 f(7,3,4) f(7,3,6) f(7,3,7)
 f(7,4,0) f(7,4,2) f(7,4,3) f(7,4,7)
 f(7,5,1) f(7,5,2) f(7,5,6) f(7,5,7)
 f(7,6,0) f(7,6,3) f(7,6,4) f(7,6,5) f(7,6,7)
 f(7,7,1) f(7,7,2) f(7,7,3) f(7,7,4) f(7,7,6) f(7,7,7)
 f(7,8,15)
 f(7,9,14) f(7,9,15)
 f(7,10,12) f(7,10,13) f(7,10,15)
 f(7,11,12) f(7,11,14) f(7,11,15)
 f(7,12,8) f(7,12,10) f(7,12,11) f(7,12,15)
 f(7,13,9) f(7,13,10) f(7,13,14) f(7,13,15)
 f(7,14,8) f(7,14,11) f(7,14,12) f(7,14,13) f(7,14,15)
 f(7,15,9) f(7,15,10) f(7,15,11) f(7,15,12) f(7,15,14) f(7,15,15)

 f(8,0,8)
 f(8,1,9)
 f(8,2,10)
 f(8,3,11)
 f(8,4,12)
 f(8,5,13)
 f(8,6,14)
 f(8,7,15)
 f(8,8,7) f(8,8,8)
 f(8,9,6) f(8,9,7) f(8,9,9)
 f(8,10,4) f(8,10,5) f(8,10,7) f(8,10,10)
 f(8,11,4) f(8,11,6) f(8,11,7) f(8,11,11)
 f(8,12,0) f(8,12,2) f(8,12,3) f(8,12,7) f(8,12,12)
 f(8,13,1) f(8,13,2) f(8,13,6) f(8,13,7) f(8,13,13)
 f(8,14,0) f(8,14,3) f(8,14,4) f(8,14,5) f(8,14,7) f(8,14,14)
 f(8,15,1) f(8,15,2) f(8,15,3) f(8,15,4) f(8,15,6) f(8,15,7) f(8,15,15)

 f(9,0,9)
 f(9,1,8) f(9,1,9)
 f(9,2,11)
 f(9,3,10) f(9,3,11)
 f(9,4,13)
 f(9,5,12) f(9,5,13)
 f(9,6,15)
 f(9,7,14) f(9,7,15)
 f(9,8,6) f(9,8,7) f(9,8,9)
 f(9,9,6) f(9,9,8) f(9,9,9)
 f(9,10,4) f(9,10,6) f(9,10,7) f(9,10,11)
 f(9,11,5) f(9,11,6) f(9,11,10) f(9,11,11)
 f(9,12,1) f(9,12,2) f(9,12,6) f(9,12,7) f(9,12,13)
 f(9,13,0) f(9,13,1) f(9,13,3) f(9,13,6) f(9,13,12) f(9,13,13)
 f(9,14,1) f(9,14,2) f(9,14,3) f(9,14,4) f(9,14,6) f(9,14,7) f(9,14,15)
 f(9,15,0) f(9,15,1) f(9,15,2) f(9,15,5) f(9,15,6) f(9,15,14) f(9,15,15)

 f(10,0,10)
 f(10,1,11)
 f(10,2,9) f(10,2,10)
 f(10,3,8) f(10,3,9) f(10,3,11)
 f(10,4,14)
 f(10,5,15)
 f(10,6,13) f(10,6,14)
 f(10,7,12) f(10,7,13) f(10,7,15)
 f(10,8,4) f(10,8,5) f(10,8,7) f(10,8,10)
 f(10,9,4) f(10,9,6) f(10,9,7) f(10,9,11)
 f(10,10,4) f(10,10,5) f(10,10,6) f(10,10,9) f(10,10,10)
 f(10,11,4) f(10,11,7) f(10,11,8) f(10,11,9) f(10,11,11)
 f(10,12,0) f(10,12,3) f(10,12,4) f(10,12,5) f(10,12,7) f(10,12,14)
 f(10,13,1) f(10,13,2) f(10,13,3) f(10,13,4) f(10,13,6) f(10,13,7) f(10,13,15)
 f(10,14,0) f(10,14,1) f(10,14,2) f(10,14,3) f(10,14,4) f(10,14,5) f(10,14,6) f(10,14,13) f(10,14,14)
 f(10,15,0) f(10,15,2) f(10,15,4) f(10,15,7) f(10,15,12) f(10,15,13) f(10,15,15)

 f(11,0,11)
 f(11,1,10) f(11,1,11)
 f(11,2,8) f(11,2,9) f(11,2,11)
 f(11,3,8) f(11,3,10) f(11,3,11)
 f(11,4,15)
 f(11,5,14) f(11,5,15)
 f(11,6,12) f(11,6,13) f(11,6,15)
 f(11,7,12) f(11,7,14) f(11,7,15)
 f(11,8,4) f(11,8,6) f(11,8,7) f(11,8,11)
 f(11,9,5) f(11,9,6) f(11,9,10) f(11,9,11)
 f(11,10,4) f(11,10,7) f(11,10,8) f(11,10,9) f(11,10,11)
 f(11,11,5) f(11,11,6) f(11,11,7) f(11,11,8) f(11,11,10) f(11,11,11)
 f(11,12,1) f(11,12,2) f(11,12,3) f(11,12,4) f(11,12,6) f(11,12,7) f(11,12,15)
 f(11,13,0) f(11,13,1) f(11,13,2) f(11,13,5) f(11,13,6) f(11,13,14) f(11,13,15)
 f(11,14,0) f(11,14,2) f(11,14,4) f(11,14,7) f(11,14,12) f(11,14,13) f(11,14,15)
 f(11,15,1) f(11,15,3) f(11,15,5) f(11,15,6) f(11,15,7) f(11,15,12) f(11,15,14) f(11,15,15)

 f(12,0,12)
 f(12,1,13)
 f(12,2,14)
 f(12,3,15)
 f(12,4,11) f(12,4,12)
 f(12,5,10) f(12,5,11) f(12,5,13)
 f(12,6,8) f(12,6,9) f(12,6,11) f(12,6,14)
 f(12,7,8) f(12,7,10) f(12,7,11) f(12,7,15)
 f(12,8,0) f(12,8,2) f(12,8,3) f(12,8,7) f(12,8,12)
 f(12,9,1) f(12,9,2) f(12,9,6) f(12,9,7) f(12,9,13)
 f(12,10,0) f(12,10,3) f(12,10,4) f(12,10,5) f(12,10,7) f(12,10,14)
 f(12,11,1) f(12,11,2) f(12,11,3) f(12,11,4) f(12,11,6) f(12,11,7) f(12,11,15)
 f(12,12,0) f(12,12,2) f(12,12,3) f(12,12,4) f(12,12,6) f(12,12,11) f(12,12,12)
 f(12,13,1) f(12,13,2) f(12,13,5) f(12,13,7) f(12,13,10) f(12,13,11) f(12,13,13)
 f(12,14,0) f(12,14,3) f(12,14,5) f(12,14,8) f(12,14,9) f(12,14,11) f(12,14,14)
 f(12,15,1) f(12,15,2) f(12,15,3) f(12,15,4) f(12,15,5) f(12,15,8) f(12,15,10) f(12,15,11) f(12,15,15)

 f(13,0,13)
 f(13,1,12) f(13,1,13)
 f(13,2,15)
 f(13,3,14) f(13,3,15)
 f(13,4,10) f(13,4,11) f(13,4,13)
 f(13,5,10) f(13,5,12) f(13,5,13)
 f(13,6,8) f(13,6,10) f(13,6,11) f(13,6,15)
 f(13,7,9) f(13,7,10) f(13,7,14) f(13,7,15)
 f(13,8,1) f(13,8,2) f(13,8,6) f(13,8,7) f(13,8,13)
 f(13,9,0) f(13,9,1) f(13,9,3) f(13,9,6) f(13,9,12) f(13,9,13)
 f(13,10,1) f(13,10,2) f(13,10,3) f(13,10,4) f(13,10,6) f(13,10,7) f(13,10,15)
 f(13,11,0) f(13,11,1) f(13,11,2) f(13,11,5) f(13,11,6) f(13,11,14) f(13,11,15)
 f(13,12,1) f(13,12,2) f(13,12,5) f(13,12,7) f(13,12,10) f(13,12,11) f(13,12,13)
 f(13,13,0) f(13,13,1) f(13,13,3) f(13,13,4) f(13,13,5) f(13,13,6) f(13,13,7) f(13,13,10) f(13,13,12) f(13,13,13)
 f(13,14,1) f(13,14,2) f(13,14,3) f(13,14,4) f(13,14,5) f(13,14,8) f(13,14,10) f(13,14,11) f(13,14,15)
 f(13,15,0) f(13,15,1) f(13,15,2) f(13,15,4) f(13,15,9) f(13,15,10) f(13,15,14) f(13,15,15)

 f(14,0,14)
 f(14,1,15)
 f(14,2,13) f(14,2,14)
 f(14,3,12) f(14,3,13) f(14,3,15)
 f(14,4,8) f(14,4,9) f(14,4,11) f(14,4,14)
 f(14,5,8) f(14,5,10) f(14,5,11) f(14,5,15)
 f(14,6,8) f(14,6,9) f(14,6,10) f(14,6,13) f(14,6,14)
 f(14,7,8) f(14,7,11) f(14,7,12) f(14,7,13) f(14,7,15)
 f(14,8,0) f(14,8,3) f(14,8,4) f(14,8,5) f(14,8,7) f(14,8,14)
 f(14,9,1) f(14,9,2) f(14,9,3) f(14,9,4) f(14,9,6) f(14,9,7) f(14,9,15)
 f(14,10,0) f(14,10,1) f(14,10,2) f(14,10,3) f(14,10,4) f(14,10,5) f(14,10,6) f(14,10,13) f(14,10,14)
 f(14,11,0) f(14,11,2) f(14,11,4) f(14,11,7) f(14,11,12) f(14,11,13) f(14,11,15)
 f(14,12,0) f(14,12,3) f(14,12,5) f(14,12,8) f(14,12,9) f(14,12,11) f(14,12,14)
 f(14,13,1) f(14,13,2) f(14,13,3) f(14,13,4) f(14,13,5) f(14,13,8) f(14,13,10) f(14,13,11) f(14,13,15)
 f(14,14,0) f(14,14,1) f(14,14,2) f(14,14,3) f(14,14,7) f(14,14,8) f(14,14,9) f(14,14,10) f(14,14,13) f(14,14,14)
 f(14,15,0) f(14,15,2) f(14,15,6) f(14,15,7) f(14,15,8) f(14,15,11) f(14,15,12) f(14,15,13) f(14,15,15)

 f(15,0,15)
 f(15,1,14) f(15,1,15)
 f(15,2,12) f(15,2,13) f(15,2,15)
 f(15,3,12) f(15,3,14) f(15,3,15)
 f(15,4,8) f(15,4,10) f(15,4,11) f(15,4,15)
 f(15,5,9) f(15,5,10) f(15,5,14) f(15,5,15)
 f(15,6,8) f(15,6,11) f(15,6,12) f(15,6,13) f(15,6,15)
 f(15,7,9) f(15,7,10) f(15,7,11) f(15,7,12) f(15,7,14) f(15,7,15)
 f(15,8,1) f(15,8,2) f(15,8,3) f(15,8,4) f(15,8,6) f(15,8,7) f(15,8,15)
 f(15,9,0) f(15,9,1) f(15,9,2) f(15,9,5) f(15,9,6) f(15,9,14) f(15,9,15)
 f(15,10,0) f(15,10,2) f(15,10,4) f(15,10,7) f(15,10,12) f(15,10,13) f(15,10,15)
 f(15,11,1) f(15,11,3) f(15,11,5) f(15,11,6) f(15,11,7) f(15,11,12) f(15,11,14) f(15,11,15)
 f(15,12,1) f(15,12,2) f(15,12,3) f(15,12,4) f(15,12,5) f(15,12,8) f(15,12,10) f(15,12,11) f(15,12,15)
 f(15,13,0) f(15,13,1) f(15,13,2) f(15,13,4) f(15,13,9) f(15,13,10) f(15,13,14) f(15,13,15)
 f(15,14,0) f(15,14,2) f(15,14,6) f(15,14,7) f(15,14,8) f(15,14,11) f(15,14,12) f(15,14,13) f(15,14,15)
 f(15,15,1) f(15,15,3) f(15,15,6) f(15,15,9) f(15,15,10) f(15,15,11) f(15,15,12) f(15,15,14) f(15,15,15)  

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Nimber%20products%20of%20powers%20of%20two;%20tensor.png
Category:Self-published work Category:Related to the compressed nim-multiplication table Category:Binary cubic tensor; 16^3 Category:Images with Povray source code Category:Nimber operations (image set)
Category:Binary cubic tensor; 16^3 Category:CC-Zero Category:Created with Persistence of Vision Category:Images with Povray source code Category:Nimber operations (image set) Category:Related to the compressed nim-multiplication table Category:Self-published work