File:QHO-Fockstate0123-animation-color.gif

Summary

Description
English: Animation of the quantum wave functions of Fock states with n=0..3 in a Quantum harmonic oscillator. The probability distributions are drawn along the ordinate, while the phase is encoded by color. The Hermite function wave packets are static in time but their quantum phase changes due to vacuum energy.
Date
Source Own work
 This plot was created with Matplotlib.
Category:PNG created with Matplotlib#QHO-Fockstate0123-animation-color.gif
Author Geek3
Other versions QHO-Fockstate0123.png

Source Code

The plot was generated with Matplotlib.

Python Matplotlib source code
#!/usr/bin/python
# -*- coding: utf8 -*-

from math import *
import matplotlib.pyplot as plt
from matplotlib import animation, colors, colorbar
import numpy as np
from numpy.polynomial.hermite import Hermite
import colorsys
from scipy.interpolate import interp1d
import os, sys

plt.rc('path', snap=False)
plt.rc('mathtext', default='regular')

# image settings
fname = 'QHO-Fockstate0123-animation-color'
width, height = 300, 300
ml, mr, mt, mb, mh, mc = 35, 19, 22, 45, 12, 6
x0, x1 = -4, 4
y0, y1 = 0.0, 0.7
nframes = 3 * 5 * 7
fps = 20

# physics settings
omega = 2 * pi

def color(phase):
    hue = (phase / (2*pi) + 2./3.) % 1
    light = interp1d([0, 1, 2, 3, 4, 5, 6], # adjust lightness
                     [0.64, 0.5, 0.55, 0.48, 0.70, 0.57, 0.64])(6 * hue)
    hls = (hue, light, 1.0) # maximum saturation
    rgb = colorsys.hls_to_rgb(*hls)
    return rgb

def animate(nframe):
    print str(nframe) + ' ',; sys.stdout.flush()
    t = 2.0 * float(nframe) / nframes
    
    for nfock in range(4):
        ax = axi[3-nfock]
        fig.sca(ax)
        ax.cla()
        ax.grid(True)
        ax.axis((x0, x1, y0, y1))
        if nfock != 0:
            ax.set_xticklabels([])
        plt.yticks([0.0, 0.2, 0.4, 0.6], ['0.0', '0.2', '0.4', ''])
        
        # dummy plot for legend
        ax.plot(0, 0, color=(1,1,1,0), label=r'$\vert{}\rangle$'.format(nfock))
        
        # Definition of Fock-states in terms of Hermite functions:
        # https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
        psi_fock = np.eye(1, nfock+1, nfock).flatten()
        a_hermite = [psi_fock[n] * pi**-0.25 / sqrt(2.**n*factorial(n))
                        * e**(-1j * omega * (n+0.5) * t) for n in range(1+nfock)]
        # doc: http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite.Hermite.html
        H = Hermite(a_hermite)
        
        x = np.linspace(x0, x1, int(ceil(1+w_px)))
        x2 = x - px_w/2.
        psi_x = np.exp(-x**2 / 2.0) * H(x)
        phi_x = np.angle(np.exp(-(x2)**2 / 2.0) * H(x2))
        y = np.abs(psi_x)**2
        
        # plot color filling
        for x_, phi_, y_ in zip(x, phi_x, y):
            ax.plot([x_, x_], [0, y_], color=color(phi_), lw=2*0.72)
        
        ax.plot(x, y, lw=2, color='black')
        leg = ax.legend(handlelength=0, handletextpad=0, borderpad=0.1,
                  borderaxespad=0.35, loc='upper left', fontsize=17)
        leg.get_frame().set_linewidth(0.0)

# create figure and axes
plt.close('all')
fig, axi = plt.subplots(4, sharey=True,
                        figsize=(width/100., height/100.))
bounds = [float(ml)/width, float(mb)/height,
          1.0 - float(mr+mc+mh)/width, 1.0 - float(mt)/height]
fig.subplots_adjust(left=bounds[0], bottom=bounds[1],
                    right=bounds[2], top=bounds[3], hspace=0)
w_px = width - (ml+mr+mc+mh) # plot width in pixels
px_w = float(x1 - x0) / w_px # width of one pixel in plot units

# axes labels
fig.text(0.5 + 0.5 * float(ml-mh-mc-mr)/width, 4./height,
         r'$x\ \ [(\hbar/(m\omega))^{1/2}]$', ha='center')
fig.text(5./width, 1.0, '$|\psi|^2$', va='top')

# colorbar for phase
cax = fig.add_axes([1.0 - float(mr+mc)/width, float(mb)/height,
                    float(mc)/width, 1.0 - float(mb+mt)/height])
cax.yaxis.set_tick_params(length=2)
cmap = colors.ListedColormap([color(phase) for phase in
                              np.linspace(0, 2*pi, 384, endpoint=False)])
norm = colors.Normalize(0, 2*pi)
cbar = colorbar.ColorbarBase(cax, cmap=cmap, norm=norm,
                    orientation='vertical', ticks=np.linspace(0, 2*pi, 3))
cax.set_yticklabels(['$0$', r'$\pi$', r'$2\pi$'], rotation=90)
fig.text(1.0 - 10./width, 1.0, '$arg(\psi)$', ha='right', va='top')

# start animation
if 0 != os.system('convert -version > ' +  os.devnull):
    print 'imagemagick not installed!'
    # warning: imagemagick produces somewhat jagged and therefore large gifs
    anim = animation.FuncAnimation(fig, animate, frames=nframes)
    anim.save(fname + '.gif', writer='imagemagick', fps=fps)
else:
    # unfortunately the matplotlib imagemagick backend does not support
    # options which are necessary to generate high quality output without
    # framewise color palettes. Therefore save all frames and convert then.
    if not os.path.isdir(fname):
        os.mkdir(fname)
    fnames = []
    
    for frame in range(nframes):
        animate(frame)
        imgname = os.path.join(fname, fname + '{:03d}'.format(frame) + '.png')
        fig.savefig(imgname)
        fnames.append(imgname)
    
    # compile optimized animation with ImageMagick
    cmd = 'convert -loop 0 -delay ' + str(100 / fps) + ' '
    cmd += ' '.join(fnames) # now create optimized palette from all frames
    cmd += r' \( -clone 0--1 \( -clone 0--1 -fill black -colorize 100% \) '
    cmd += '-append +dither -colors 255 -unique-colors '
    cmd += '-write mpr:colormap +delete \) +dither -map mpr:colormap '
    cmd += '-alpha activate -layers OptimizeTransparency '
    cmd += fname + '.gif'
    os.system(cmd)
    
    for fnamei in fnames:
        os.remove(fnamei)
    os.rmdir(fname)

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
Category:License migration redundant#QHO-Fockstate0123-animation-color.gifCategory:GFDL#QHO-Fockstate0123-animation-color.gif
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Category:CC-BY-3.0#QHO-Fockstate0123-animation-color.gif
You may select the license of your choice.
Category:Self-published work
Category:1D quantum harmonic oscillators Category:Animations of quantum wave functions Category:Hermite functions Category:Animated GIF files Category:Photos by User:Geek3
Category:1D quantum harmonic oscillators Category:Animated GIF files Category:Animations of quantum wave functions Category:CC-BY-3.0 Category:GFDL Category:Hermite functions Category:License migration redundant Category:PNG created with Matplotlib Category:Photos by User:Geek3 Category:Self-published work