File:Piecewise linear function2D.svg

Description Illustration of a en:piecewise linear function
Date (UTC)
Source self-made, with en:MATLAB.
Author Oleg Alexandrov
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#Piecewise%20linear%20function2D.svgCategory:PD-self#Piecewise%20linear%20function2D.svg

Source code (MATLAB)

% Draw a piewise-linear function in two dimensions on a given triangulation.
% Due to a bug in plot2svg, it can't export 3D pictures well.
% Then, I have to take the 3D picture, and rotate and project it manually to 2D.
% That makes the code more complicated.

function main()

%  read the triangulation from the data at the end of the code
   dummy_arg = 0;
   node=get_nodes(dummy_arg);      [np, k]=size(node);
   ele=get_triangles(dummy_arg);   [nt, k]=size(ele);

   % the function whose piecewise-linear approximation will be graphed
   f=inline('0.07*(22-8*x^2-10*y^2)+0.14');

   % will keep here the triangles to plot and their colors
   P  = zeros(3*nt, 3);
   C  = zeros(nt, 3);
   
   % iterate through triangles, save the coordinates of all the triangles
   alpha=0.3;
   for i=1:nt;
      u=ele(i,2); v=ele(i, 3); w=ele(i, 4);
      y1=node(u, 2); x1=node(u, 3); f1=f(x1, y1);
      y2=node(v, 2); x2=node(v, 3); f2=f(x2, y2);
      y3=node(w, 2); x3=node(w, 3); f3=f(x3, y3);

      % the color of the given triangle is chosen randomly
      color = alpha*rand(1, 3)+(1-alpha)*[1 1 1];

      % store the triangle and its color for the future
      m = 3*i - 2;
      P(m+0, 1) = x1; P(m+0, 2) = y1; P(m+0, 3) = f1;
      P(m+1, 1) = x2; P(m+1, 2) = y2; P(m+1, 3) = f2;
      P(m+2, 1) = x3; P(m+2, 2) = y3; P(m+2, 3) = f3;

      C(i, :) = color;
   end

% the "base", the domain of the piecewise linear function
   P0 = P; P0(:, 3) = 0*P0(:, 3);

%  Do a rotation in 3D, then plot the projections onto the xy-plane.
%  This has to be done by hand since plot2svg has trouble saving 3D graphics
   a = pi/2.5; b = 0; c = 0;
   Q = do_rotate(P, a, b, c);
   Q0 = do_rotate(P0, a, b, c);

   % sort the triangles by the third coordinate of the center of gravity (after the rotation)
   R = zeros(nt, 2);
   for i=1:nt
      m = 3*i-2;
      z1=Q(m, 3);
      z2=Q(m+1, 3);
      z3=Q(m+2, 3);

      R(i, 1) = (z1+z2+z3)/3;
      R(i, 2) = i;
   end
   R = sortrows(R, 1);

   % plot the projection of the rotated figure and the base shape
   clf; hold on; axis equal; axis off;
   lw = 0.5; black = [0, 0, 0]; white = [1, 1, 1];
   for i = 1:nt

      j = R(i, 2);
      m = 3*j-2;
      fill([Q(m, 1), Q(m+1, 1) Q(m+2, 1)], [Q(m, 2), Q(m+1, 2) Q(m+2, 2)], C(i, :));
      
      fill([Q0(m, 1), Q0(m+1, 1) Q0(m+2, 1)], [Q0(m, 2), Q0(m+1, 2) Q0(m+2, 2)], white);

      plot([Q(m, 1), Q(m+1, 1) Q(m+2, 1), Q(m, 1)], [Q(m, 2), Q(m+1, 2) Q(m+2, 2), Q(m, 2)], ...
	   'linewidth', lw, 'color', black);

      plot([Q0(m, 1), Q0(m+1, 1) Q0(m+2, 1), Q0(m, 1)], [Q0(m, 2), Q0(m+1, 2) Q0(m+2, 2), Q0(m, 2)], ...
	   'linewidth', lw, 'color', black);
   end

   % a small fix to avoid a bug with the bounding box when exporting
   small = 0.1;
   Sx = min(min(Q(:, 1)), min(Q0(:, 1)))-small;    Lx = max(max(Q(:, 1)), max(Q0(:, 1)))+small;
   Sy = min(min(Q(:, 2)), min(Q0(:, 2)))-small;    Ly = max(max(Q(:, 2)), max(Q0(:, 2)))+small;
   plot(Lx, Ly, '*', 'color', 0.99*white);
   plot(Sx, Sy, '*', 'color', 0.99*white);
   axis([Sx-small Lx+small, Sy-small, Ly+small])

%  export as eps and svg
%  saveas(gcf, 'piecewise_linear2D_proj.eps', 'psc2')
   plot2svg('piecewise_linear2D_proj.svg')
   
function node = get_nodes (dummy_arg)

   node =[1 1 0
2 0.913545 0.406737
3 0.669131 0.743145
4 0.309017 0.951057
5 -0.104528 0.994522
6 -0.5 0.866025
7 -0.809017 0.587785
8 -0.978148 0.207912
9 -0.978148 -0.207912
10 -0.809017 -0.587785
11 -0.5 -0.866025
12 -0.104528 -0.994522
13 0.309017 -0.951057
14 0.669131 -0.743145
15 0.913545 -0.406737
16 -0.161265 -0.179103
17 0.313878 0.228046
18 -0.314083 0.348825
19 0.40037 -0.290886
20 0.0609951 -0.58033
21 0.0617879 0.587873
22 -0.587046 1.34875e-16];
   

function ele = get_triangles(dummy_arg)

   ele=[1 10 11 16
2 16 18 22
3 10 22 9
4 10 16 22
5 11 12 20
6 7 22 18
7 21 3 4
8 8 9 22
9 8 22 7
10 1 19 15
11 20 13 14
12 6 18 21
13 6 21 5
14 19 1 17
15 19 16 20
16 11 20 16
17 2 17 1
18 16 17 18
19 6 7 18
20 17 16 19
21 21 4 5
22 3 17 2
23 17 3 21
24 20 12 13
25 19 20 14
26 18 17 21
27 14 15 19];

function Q = do_rotate(P, a, b, c)

   M = [1, 0, 0; 0, cos(a), sin(a); 0 -sin(a), cos(a)]*[cos(b), 0, -sin(b); 0, 1, 0; sin(b), 0, cos(b)]...
       *[cos(c), sin(c), 0; -sin(c), cos(c), 0; 0, 0, 1];

   [m, n] = size(P);

   Q = 0*P;

   for i=1:m

      X = P(i, :)';
      X = M*X;
      
      Q(i, 1) = X(1);
      Q(i, 2) = X(2);
      Q(i, 3) = X(3);
   end
Category:Piecewise linear functions Category:Images with Matlab source code Category:Files by User:Oleg Alexandrov from en.wikipedia Category:Mesh generation
Category:Files by User:Oleg Alexandrov from en.wikipedia Category:Images with Matlab source code Category:Mesh generation Category:PD-self Category:Pages using deprecated source tags Category:Piecewise linear functions Category:Self-published work