File:Fitzhugh-nagumo b = 0.8.gif

Summary

Description
English: FitzHugh-Nagumo model, with a = 0.7, b = 0.8, tau = 12.5, R = 0.1, and varying I_ext
```python
%%capture
from matplotlib.widgets import AxesWidget
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
import os

for b in [0.8, 1.25, 2.0]:
    for i, alpha in enumerate(np.sin(np.linspace(-np.pi/2, np.pi/2, 121))):
        # Define the parameter values
        a = 0.7
        tau = 12.5
        R = 0.1
        I_ext_0 = (2/3 + (a-1)/b)/R
        I_ext_1 = (-2/3 + (a+1)/b)/R
        I_ext_min = min(I_ext_0, I_ext_1) - 2.0 / R
        I_ext_max = max(I_ext_0, I_ext_1) + 2.0 / R
        I_ext = I_ext_min * (alpha - 1.0)/(-2.0) + I_ext_max * (alpha + 1.0)/(+2.0)

        # Define the system of ODEs
        def system(t, y):
            v, w = y
            dv = v - (v ** 3) / 3 - w + R * I_ext
            dw = (1 / tau) * (v + a - b * w)
            return [dv, dw]

        vmin, vmax, wmin, wmax = -2, 2, -2+R*I_ext, 2+R*I_ext

        t_span = [0, 50]
        trajectory_resolution = 30
        initial_conditions = [(x, y) for x in np.linspace(vmin, vmax, trajectory_resolution) for y in np.linspace(wmin, wmax, trajectory_resolution)]
        sols = {}
        for ic in initial_conditions:
            sols[ic] = solve_ivp(system, t_span, ic, dense_output=True, max_step=0.1)

        vs = np.linspace(vmin, vmax, 200)
        v_axis = np.linspace(vmin, vmax, 20)
        w_axis = np.linspace(wmin, wmax, 20)

        v_values, w_values = np.meshgrid(v_axis, w_axis)

        dv = v_values - (v_values ** 3) / 3 - w_values + R * I_ext
        dw = (1 / tau) * (v_values + a - b * w_values)

        fig, ax = plt.subplots(figsize=(16,16))
        # integral curves
        for ic in initial_conditions:
            sol = sols[ic]
            ax.plot(sol.y[0], sol.y[1], color='k', alpha=0.4, linewidth=0.5)

        # vector fields
        arrow_lengths = np.sqrt(dv**2 + dw**2)
        alpha_values = 1 - (arrow_lengths / np.max(arrow_lengths))**0.4
        ax.quiver(v_values, w_values, dv, dw, color='blue', linewidth=0.5, scale=25, alpha=alpha_values)

        # nullclines
        ax.plot(vs, vs - vs**3/3 + R * I_ext,  color="green", alpha=0.4, label="v nullcline")
        ax.plot(vs, (vs + a) / b, color="red", alpha=0.4, label="w nullcline")

        # ax.set_xlabel('v')
        # ax.set_ylabel('w')
        ax.set_title(f'FitzHugh-Nagumo Model\n$b={b:.2f}$\t\t$I_{{ext}} = {I_ext:.2f}$')

        # ax.legend()
        ax.set_xlim(vmin, vmax)
        ax.set_ylim(wmin, wmax)
        ax.set_xticks([])
        ax.set_yticks([])

        dir_path = f"./{b}"
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)

        fig.savefig(f"{dir_path}/{i}.png")

import imageio.v3 as iio
import os
from natsort import natsorted
import moviepy.editor as mp

for b in [0.8, 1.25, 2.0]:
    dir_path = f"./{b}"
    file_names = natsorted((fn for fn in os.listdir(dir_path) if fn.endswith('.png')))

    # Create a list of image files and set the frame rate
    images = []
    fps = 12

    # Iterate over the file names and append the images to the list
    for file_name in file_names:
        file_path = os.path.join(dir_path, file_name)
        images.append(iio.imread(file_path))

    filename = f"fitzhugh-nagumo_b={b}"
    iio.imwrite(f"{filename}.gif", images + list(reversed(images)), duration=1000/fps, rewind=True)
    clip = mp.ImageSequenceClip(images + list(reversed(images)), fps=fps)
    clip.write_videofile(f"{filename}.mp4")
```
Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Fitzhugh-nagumo%20b%20=%200.8.gif
Category:Self-published work Category:Ordinary differential equations Category:Neuroscience Category:Images with Python source code
Category:CC-BY-SA-4.0 Category:Images with Python source code Category:Neuroscience Category:Ordinary differential equations Category:Self-published work