File:FiniteDifference-Fisheye.gif
Summary
Description |
English: A Maxwell's fisheye has a gradually varying refractive index, such that a point source on its edge will be focussed on the opposite edge of the lens. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1395303316268126208 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.0 code
\[Lambda]0 = 1.; k0 = N[(2 \[Pi])/\[Lambda]0]; (*The wavelength in vacuum is set to 1, so all lengths are now in units of wavelengths*)
\[Delta] = \[Lambda]0/20; \[CapitalDelta] = 40*\[Lambda]0; (*Parameters for the grid*)
ReMapC[x_] := RGBColor[(2 x - 1) UnitStep[x - 0.5], 0, (1 - 2 x) UnitStep[0.5 - x]];
R = \[CapitalDelta]/3;
ren = Table[
If[x^2 + y^2 <= R^2, 2/(1 + ((x^2 + y^2)/R^2)), 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)
imn = Table[
Chop[5 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d))], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Imaginary part of the refractive index (used to emulate absorbing boundaries)*)
dim = Dimensions[ren][[1]];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)
n = ren + I imn;
sinstep[t_] := 20 - (5/6 \[CapitalDelta]) Sin[\[Pi]/2 t]^2;
frames1 = Table[
\[Phi]in = Table[E^(-((x)^2 + (y + sinstep[t])^2)/(2 (\[Lambda]0/5)^2)), {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];(*Discretized source*)
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
MatrixPlot[Transpose[(Re[(\[Phi]in + \[Phi]s)]/Max[Abs@Re[\[Phi]in + \[Phi]s][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]])][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> ReMapC, DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}, PlotLabel -> "Maxwell's fisheye: n=\!\(\*FractionBox[\(2\), \(1 + \
\*FractionBox[SuperscriptBox[\(r\), \(2\)], SuperscriptBox[\(R\), \(2\)]]\)]\)", LabelStyle -> {Black, Bold}, Epilog -> {White, Circle[{Round[dim/2 - (4 d)/\[Delta]], Round[dim/2 - (4 d)/\[Delta]]}, dim/3 - (1 d)/\[Delta]]}](*Plot everything*)
, {t, 0, 1, 1/20}];
sinstep[t_] := 20 - (5/6 \[CapitalDelta]) Sin[\[Pi]/2 t]^2;
frames2 = Table[
\[Phi]in = Table[E^(-((x - \[CapitalDelta]/3 Cos[\[Theta]])^2 + (y - \[CapitalDelta]/3 Sin[\[Theta]])^2)/(2 (\[Lambda]0/5)^2)), {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];(*Discretized source*)
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
MatrixPlot[Transpose[(Re[(\[Phi]in + \[Phi]s)]/Max[Abs@Re[\[Phi]in + \[Phi]s][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]])][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> ReMapC, DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}, PlotLabel -> "Maxwell's fisheye: n=\!\(\*FractionBox[\(2\), \(1 + \
\*FractionBox[SuperscriptBox[\(r\), \(2\)], SuperscriptBox[\(R\), \(2\)]]\)]\)", LabelStyle -> {Black, Bold}, Epilog -> {White, Circle[{Round[dim/2 - (4 d)/\[Delta]], Round[dim/2 - (4 d)/\[Delta]]}, dim/3 - (1 d)/\[Delta]]}](*Plot everything*)
, {\[Theta], \[Pi]/2, 3/2 \[Pi], \[Pi]/20}];
sinstep[t_] := 1/3 \[CapitalDelta] + (\[CapitalDelta]/2 - \[CapitalDelta]/3) Sin[\[Pi]/2 t]^2;
frames3 = Table[
\[Phi]in = Table[E^(-((x)^2 + (y + sinstep[t])^2)/(2 (\[Lambda]0/5)^2)), {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];(*Discretized source*)
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
MatrixPlot[ Transpose[(Re[(\[Phi]in + \[Phi]s)]/Max[Abs@Re[\[Phi]in + \[Phi]s][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]])][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> ReMapC, DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}, PlotLabel -> "Maxwell's fisheye: n=\!\(\*FractionBox[\(2\), \(1 + \
\*FractionBox[SuperscriptBox[\(r\), \(2\)], SuperscriptBox[\(R\), \(2\)]]\)]\)", LabelStyle -> {Black, Bold}, Epilog -> {White, Circle[{Round[dim/2 - (4 d)/\[Delta]], Round[dim/2 - (4 d)/\[Delta]]}, dim/3 - (1 d)/\[Delta]]}](*Plot everything*)
, {t, 0, 1, 1/10}];
ListAnimate[Join[frames1, frames2, frames3]]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|