File:ColorVSspectrum.webm

Summary

Description
English: The human eyes have "only" 3 different colour receptors, so multiple spectra can be perceived as the same colour.
Date
Source https://mathstodon.xyz/@j_bertolotti/112513527893709299
Author Berto
Permission
(Reusing this file)
https://mathstodon.xyz/@j_bertolotti/111363365323269417

Mathematica 14.0 code

path = "path to where you saved the color matching functions";
LMS = Import[ path <> "/LMS.dat"]; (*All color matching functions downloaded from www.cvrl.org*)
Lr = LMS[[All, 1 ;; 2]];
Mr = LMS[[All, 1 ;; 3 ;; 2]];
Sr = LMS[[All, 1 ;; 4 ;; 3]];
{\[Lambda], X, Y, Z} = Transpose@Import[path <> "/XYZ-color_matching.dat"];
rgbcolor[spectrum_] := ColorConvert[({X, Y, Z} . spectrum), "XYZ" -> "RGB"];
\[Lambda]sampled = \[Lambda][[1 ;; -1 ;; 10]];
spectrum[coefficients_] := N[(Sum[coefficients[[j]]*E^(-((# - \[Lambda]sampled[[j]])^2/(2. (5)^2))), {j, 1, Dimensions[\[Lambda]sampled][[1]]}] &) /@ \[Lambda]];
plot[coefficients_] := Grid[{{Show[
     ListPlot[{Lr, Mr, Sr}, PlotStyle -> {Red, Green, Blue}, Joined -> True, Axes -> {True, False}, Frame -> False, AxesLabel -> {"\[Lambda]", ""}, LabelStyle -> {FontSize -> 14, Bold, Black}, PlotRange -> All]
     ,
     Graphics[{FontSize -> 14, Blue, Text[Style["S", Bold], {465, 0.95}], Green, Text[Style["M", Bold], {515, 0.95}], Red, Text[Style["L", Bold], {610, 0.95}]}]
     ,
     ListPlot[Transpose[{\[Lambda], spectrum[coefficients]}], PlotStyle -> Black, Joined -> True, PlotRange -> All], PlotRange -> All, ImageSize -> Medium]
    ,
    Graphics[{rgbcolor[0.25*spectrum[coefficients]], Disk[], Black, 
      Thick, Circle[]}]
    }}]
plot1[k_] := Grid[{{Show[
      ListPlot[{Lr, Mr, Sr}, PlotStyle -> {Red, Green, Blue}, Joined -> True, Axes -> {True, False}, Frame -> False, AxesLabel -> {"\[Lambda]", ""}, LabelStyle -> {FontSize -> 14, Bold, Black}, PlotRange -> All]
      ,
      Graphics[{FontSize -> 14, Blue, Text[Style["S", Bold], {465, 0.95}], Green, Text[Style["M", Bold], {515, 0.95}], Red, Text[Style["L", Bold], {610, 0.95}]}]
      ,
      ListPlot[ Transpose[{\[Lambda], Table[If[j == k, 1, 0], {j, 1, Dimensions[\[Lambda]][[1]]}]}], PlotStyle -> Black, Joined -> True, PlotRange -> All]
      , PlotRange -> All, ImageSize -> Medium]
     ,
     Graphics[{rgbcolor[ Table[If[j == k, 1, 0], {j, 1, Dimensions[\[Lambda]][[1]]}]], Disk[], Black, Thick, Circle[]}]
     }}];
frames0 = Grid[{{Show[
      ListPlot[{Lr, Mr, Sr}, PlotStyle -> {Red, Green, Blue}, Joined -> True, Axes -> {True, False}, Frame -> False, AxesLabel -> {"\[Lambda]", ""}, LabelStyle -> {FontSize -> 14, Bold, Black}, PlotRange -> All]
      ,
      Graphics[{FontSize -> 14, Blue, Text[Style["S", Bold], {465, 0.95}], Green, Text[Style["M", Bold], {515, 0.95}], Red, Text[Style["L", Bold], {610, 0.95}]}]
      ,
      ListPlot[ Transpose[{\[Lambda], ConstantArray[0, Dimensions[\[Lambda]][[1]]]}], PlotStyle -> Black, Joined -> True, PlotRange -> All]
      , PlotRange -> All, ImageSize -> Medium]
     ,
     Graphics[{Black, Disk[], Black, Thick, Circle[]}]
     }}];
frames1 = Table[plot1[k], {k, 1, Dimensions[\[Lambda]][[1]], 2}];
sinstep[t_] := Sin[\[Pi]/2 t]^2;
frames2 = Table[plot[Table[If[j == 5 || j == 10 || j == 25, 0.5*sinstep[t], 0], {j, 1, 45}]], {t, 0, 1, 0.05}];
spectrlets = Table[{X, Y, Z} . (spectrum@Table[If[j == k, 1, 0], {j, 1, 45}]), {k, 1, 45}];
spectrum2[k_] := Module[{tmp}, tmp = ConstantArray[0, 45]; tmp[[1]] = 1; Return[RotateRight[tmp, k - 1]]];
frames3 = Table[plot[0.5*coefficients2], {t, 0, 1.5, 0.01}];
t = 1.5;
frames4 = Table[plot[a*coefficients2], {a, 0, 0.5, 0.05}];
ListAnimate[ Join[Table[frames0, {5}], Reverse[frames1[[1 ;; -1 ;; 2]]], Table[frames0, {5}], Table[frames2[[1]], {5}], frames2, Table[frames2[[-1]], {5}], frames3, Reverse[frames4]  ] ]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#ColorVSspectrum.webm
Category:Self-published work Category:Color vision Category:Spectrum Category:Images with Mathematica source code
Category:CC-Zero Category:Color vision Category:Images with Mathematica source code Category:Self-published work Category:Spectrum