File:Van Cittert-Zernike.webm

Summary

Description
English: The van Cittert–Zernike theorem is usually phrased in terms of fringe visibility, but a simpler way to look at it is that a incoherent source seen from far away enough will look like a point source (i.e. spatially coherent).
Date
Source https://twitter.com/j_bertolotti/status/1674801693228417031?s=20
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 13.1 code

c = 10^8;
w[x0_, y0_, t_, \[Omega]0_, \[Sigma]_, \[Phi]0_] := 
 E^(-(t^2/(2 \[Sigma]^2)))*E^(-I \[Omega]0 t)*E^(I \[Phi]0)*E^(
  I \[Omega]0/c Sqrt[(x - x0)^2 + (y - y0)^2])/
  Sqrt[(x - x0)^2 + (y - 
     y0)^2](*HankelH1[1,\[Omega]0/cSqrt[(x-x0)^2+(y-y0)^2]]*)
\[Omega]0 = 10^10;
p1 = {-0.2, 0};
p2 = {0.2, -0.05};
p3 = {0.1, 0.15};
\[Alpha]1 = 1; \[Alpha]2 = Sqrt[2.]; \[Alpha]3 = Sqrt[3.];
k0 = \[Omega]0/c; \[Lambda]0 = (2 \[Pi])/k0;
plot0[\[Tau]_, range_, shift_] := ContourPlot[{
   Re[w[p1[[1]], p1[[2]], \[Tau], \[Alpha]1*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p2[[1]], p2[[2]], \[Tau], \[Alpha]2*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p3[[1]], p3[[2]], \[Tau], \[Alpha]3*\[Omega]0, 10^3, 0]] == 0
   }, {x, -range, range}, {y, -range, range}, 
  ContourStyle -> {LightGray, LightGray, LightGray, Black}, 
  Epilog -> {Black, Disk[p1, 0.01], Disk[p2, 0.01], Disk[p3, 0.01]}, 
  PlotPoints -> 50, Frame -> False]
frame0 = plot0[0, 0.5, 0];
sinstep[t_] := Sin[\[Pi]/2 t]^2
plot1[\[Tau]_, range_, shift_, t_] := ContourPlot[{
   Re[w[p1[[1]], p1[[2]], \[Tau], \[Alpha]1*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p2[[1]], p2[[2]], \[Tau], \[Alpha]2*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p3[[1]], p3[[2]], \[Tau], \[Alpha]3*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p1[[1]], p1[[2]], \[Tau], \[Alpha]1*\[Omega]0, 10^3, 0] + 
      w[p2[[1]], p2[[2]], \[Tau], \[Alpha]2*\[Omega]0, 10^3, 0] + 
      w[p3[[1]], p3[[2]], \[Tau], \[Alpha]3*\[Omega]0, 10^3, 0]] == 0
   }, {x, -range, range}, {y, -range, range}, 
  ContourStyle -> {LightGray, LightGray, LightGray, 
    Directive[Opacity[sinstep[t]], Black]}, 
  Epilog -> {Black, Disk[p1, 0.01], Disk[p2, 0.01], Disk[p3, 0.01]}, 
  PlotPoints -> 50, Frame -> False]
frames1 = Table[plot1[0, 0.5, 0, t], {t, 0, 1, 1/20.}];
plot2[\[Tau]_, range_, shift_] := ContourPlot[{
   Re[w[p1[[1]], p1[[2]], \[Tau], \[Alpha]1*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p2[[1]], p2[[2]], \[Tau], \[Alpha]2*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p3[[1]], p3[[2]], \[Tau], \[Alpha]3*\[Omega]0, 10^3, 0]] == 0
   ,
   Re[w[p1[[1]], p1[[2]], \[Tau], \[Alpha]1*\[Omega]0, 10^3, 0] + 
      w[p2[[1]], p2[[2]], \[Tau], \[Alpha]2*\[Omega]0, 10^3, 0] + 
      w[p3[[1]], p3[[2]], \[Tau], \[Alpha]3*\[Omega]0, 10^3, 0]] == 0
   }, {x, -range, range}, {y, -range + shift, range + shift}, 
  ContourStyle -> {LightGray, LightGray, LightGray, Black}, 
  Epilog -> {Black, Disk[p1, 0.01], Disk[p2, 0.01], Disk[p3, 0.01]}, 
  PlotPoints -> 50, Frame -> False]
frames2 = Table[plot2[0, 0.5, 5*sinstep[t]], {t, 0, 1, 1/50}];
ListAnimate[Join[Table[frame0, {5}], frames1, Table[frames1[[-1]], {5}], frames2, 
 Table[frames2[[-1]], {10}]]]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Van%20Cittert-Zernike.webm
Category:Self-published work Category:Optics Category:Coherence Category:Images with Mathematica source code
Category:CC-Zero Category:Coherence Category:Images with Mathematica source code Category:Optics Category:Pages using deprecated source tags Category:Self-published work