File:Fitting and extrapolation.gif
Summary
Description |
English: A lot of different models can be a good fit for your data. That by itself doesn't mean your model is good.
And extrapolating from your fit is easily a recipe for disaster. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1234528010809810944 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.0 code
\[Sigma] = 15; data = Table[{j, j^2 + RandomVariate[NormalDistribution[0, \[Sigma]]]}, {j, 5, 20}]; dim = Dimensions[data][[1]] ed = Table[{data[[j, 1]], data[[j, 2]] \[PlusMinus] \[Sigma]}, {j, 1, dim}]; expfit = FindFit[data, a*E^(b x) + c, {a, b, c}, x]; powfit = FindFit[data, a*x^b + c, {a, b, c}, x]; sigmoidalfit = FindFit[data, a*Erf[b*x + c] + a, {{a, 200}, {b, 0.15}, {c, -2}}, x]; p0 = Table[ Show[ Plot[x^2, {x, 0, j}, PlotStyle -> {Thick, Gray, Dashed}], PlotRange -> {{0, 25}, {0, 500}}, AxesOrigin -> {0, 0}, Ticks -> None, AxesLabel -> {"x", "y(x)"}, LabelStyle -> {Black, Bold, Medium}, Epilog -> {Text[Style["Ground truth", Bold, FontSize -> 14], Scaled[{0.5, 0.9}]]}], {j, 0.1, 25, 0.4}]; p1 = Table[ Show[ Plot[x^2, {x, 0, 100}, PlotStyle -> {Thick, Gray, Dashed}], ListPlot[ed[[1 ;; j]], PlotStyle -> {Thick, Black, PointSize[0.02]}], PlotRange -> {{0, 25}, {0, 500}}, AxesOrigin -> {0, 0}, Ticks -> None, AxesLabel -> {"x", "y(x)"}, LabelStyle -> {Black, Bold, Medium}, Epilog -> {Text[Style["Data Points", Bold, FontSize -> 14], Scaled[{0.5, 0.9}]]}], {j, 1, 16, 1}]; p2 = Table[ Show[ Plot[x^2, {x, 0, 100}, PlotStyle -> {Thick, Gray, Dashed}], ListPlot[ed, PlotStyle -> {Thick, Black, PointSize[0.02]}], Plot[(a*E^(b x) + c) /. expfit, {x, 0, j}, PlotStyle -> {Thick, Purple}], PlotRange -> {{0, 25}, {0, 500}}, AxesOrigin -> {0, 0}, Ticks -> None, AxesLabel -> {"x", "y(x)"}, LabelStyle -> {Black, Bold, Medium}, Epilog -> {Text[Style["Exponential fit", Bold, FontSize -> 14], Scaled[{0.5, 0.9}]]}], {j, 0.1, 25, 0.4}]; p3 = Table[ Show[ Plot[x^2, {x, 0, 100}, PlotStyle -> {Thick, Gray, Dashed}], ListPlot[ed, PlotStyle -> {Thick, Black, PointSize[0.02]}], Plot[(a*E^(b x) + c) /. expfit, {x, 0, 100}, PlotStyle -> {Thick, Purple}], Plot[(a*x^b + c) /. powfit, {x, 0, j}, PlotStyle -> {Thick, Orange}], PlotRange -> {{0, 25}, {0, 500}}, AxesOrigin -> {0, 0}, Ticks -> None, AxesLabel -> {"x", "y(x)"}, LabelStyle -> {Black, Bold, Medium}, Epilog -> {Text[Style["Polynomial fit", Bold, FontSize -> 14], Scaled[{0.5, 0.9}]]}], {j, 0.1, 25, 0.4}]; p4 = Table[ Show[ Plot[x^2, {x, 0, 100}, PlotStyle -> {Thick, Gray, Dashed}], ListPlot[ed, PlotStyle -> {Thick, Black, PointSize[0.02]}], Plot[(a*E^(b x) + c) /. expfit, {x, 0, 100}, PlotStyle -> {Thick, Purple}], Plot[(a*x^b + c) /. powfit, {x, 0, 100}, PlotStyle -> {Thick, Orange}], Plot[(a*Erf[b*x + c] + a) /. sigmoidalfit, {x, 0, j}, PlotStyle -> {Thick, Cyan}], PlotRange -> {{0, 25}, {0, 500}}, AxesOrigin -> {0, 0}, Ticks -> None, AxesLabel -> {"x", "y(x)"}, LabelStyle -> {Black, Bold, Medium}, Epilog -> {Text[Style["Sigmoidal fit", Bold, FontSize -> 14], Scaled[{0.5, 0.9}]]}], {j, 0.1, 25, 0.4}]; p5 = Table[ Show[ Plot[x^2, {x, 0, 100}, PlotStyle -> {Thick, Gray, Dashed}], ListPlot[ed, PlotStyle -> {Thick, Black, PointSize[0.02]}], Plot[(a*E^(b x) + c) /. expfit, {x, 0, 100}, PlotStyle -> {Thick, Purple}], Plot[(a*x^b + c) /. powfit, {x, 0, 100}, PlotStyle -> {Thick, Orange}], Plot[(a*Erf[b*x + c] + a) /. sigmoidalfit, {x, 0, 250}, PlotRange -> All, PlotStyle -> {Thick, Cyan}], PlotRange -> {{0, j*25}, {0, j*500}}, AxesOrigin -> {0, 0}, Ticks -> None, AxesLabel -> {"x", "y(x)"}, LabelStyle -> {Black, Bold, Medium}, Epilog -> {Text[Style["Extrapolations", Bold, FontSize -> 14], Scaled[{0.5, 0.9}]]}], {j, 1, 7, 0.1}]; ListAnimate[Join[p0, p1, p2, p3, p4, p5]]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|