File:FiniteDifference-Apodization.webm

Summary

Description
English: A uniformly illuminated lens will produce a sharp focus, with small side lobes (Airy disk). These lobes can produce weird artefacts in the image. One possibility to remove them, is to smoothly remove light from the sides of the lens (apodization).
Date
Source https://twitter.com/j_bertolotti/status/1491389939384471555
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 13.0 code

\[Lambda]0 = 1.; k0 = 
 N[(2 \[Pi])/\[Lambda]0]; (*The wavelength in vacuum is set to 1, so \
all lengths are now in units of wavelengths*)
\[Delta] = \
\[Lambda]0/15; \[CapitalDelta] = 
 40*\[Lambda]0; (*Parameters for the grid*)
\[Sigma] = 
  10 \[Lambda]0; (*width of the gaussian beam*)

sourcef[x_, y_] := 
  E^(-(x^2/(2 \[Sigma]^2)))
    E^(-((y + \[CapitalDelta]/2)^2/(2 (\[Lambda]0/2)^2))) E^(I k0 y);
\[Phi]in = 
  Table[Chop[sourcef[x, y]], {x, -\[CapitalDelta]/2, \[CapitalDelta]/
    2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/
    2, \[Delta]}]; (*Discretized source*)

d = \[Lambda]0/2; (*typical scale of the absorbing layer*)

imn = Table[
   Chop[5 (E^-((x + \[CapitalDelta]/2)/d) + 
       E^((x - \[CapitalDelta]/2)/d) + 
       E^-((y + \[CapitalDelta]/2)/d) + 
       E^((y - \[CapitalDelta]/2)/d))], {x, -\[CapitalDelta]/
    2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/
    2, \[CapitalDelta]/
    2, \[Delta]}]; (*Imaginary part of the refractive index (used to \
emulate absorbing boundaries)*)
dim = Dimensions[\[Phi]in][[1]]
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; 
(*Discretized Laplacian*)

c1 = -\[CapitalDelta]/5; c2 = -\[CapitalDelta]/5;
ycenter = 
  Map[y0 /. # &, 
   FullSimplify[Solve[(x1)^2 + (y1 - y0)^2 == r^2, {y0}]][[All, 1, 
    All]]  ];
surface2[x_] := 
  Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> 
          ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), 
       x1 -> \[CapitalDelta]/2, 
       r -> (c1^2 + (c1 \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/
         16)/(2 (c1 + \[CapitalDelta]/4))} ] + 
    0.0 (Sin[3 x] + Sin[2 \[Pi] x])];
surface1[x_] := 
  Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> 
        ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), 
     x1 -> \[CapitalDelta]/2, 
     r -> (c2^2 + (c2 \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(
      2 (c2 + \[CapitalDelta]/4))}];

ren = Table[
   If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 3, 
    1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/
    2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/
    2, \[Delta]}];

stopstep[t_] := t (2 - t);
frames1 = Table[
   apodization = 
    Table[If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 
      1 (1 - E^(-(x^2/((200 - 190*stopstep[t]) \[Sigma]^2)))), 
      0], {x, -\[CapitalDelta]/2, \[CapitalDelta]/
      2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/
      2, \[Delta]}];
   n = ren + I imn + I apodization;
   b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-
   hand side of the equation we want to solve*)
   
   M = L + DiagonalMatrix[
      SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-
   hand side of the equation we want to solve*)
   \[Phi]s = 
    Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
   
   GraphicsRow[{
     ImageSubtract[
      ImageAdd[
       ArrayPlot[
        Transpose[(Abs[\[Phi]in + \[Phi]s]/
           Max[Abs[\[Phi]in + \[Phi]s]])^2][[(
          4 d)/\[Delta] ;; (-4 d)/\[Delta], (
          4 d)/\[Delta] ;; (-4 d)/\[Delta]]], 
        ColorFunction -> "AvocadoColors" , DataReversed -> True, 
        Frame -> False, PlotRange -> {0, 1}],
       ArrayPlot[Transpose@((ren - 1)/1) , DataReversed -> True , 
        ColorFunctionScaling -> False, ColorFunction -> GrayLevel, 
        Frame -> False]
       ],
      ArrayPlot[Transpose@(30*apodization) , DataReversed -> True , 
       ColorFunctionScaling -> False, ColorFunction -> GrayLevel, 
       Frame -> False]
      ]
     ,
     ListPlot[
      Transpose[(Abs[\[Phi]in + \[Phi]s]/
          Max[Abs[\[Phi]in + \[Phi]s]])^2][[(
         4 d)/\[Delta] ;; (-4 d)/\[Delta], (
         4 d)/\[Delta] ;; (-4 d)/\[Delta]]][[460, 
       271 - 100 ;; 271 + 100]], PlotRange -> All, Axes -> False, 
      Frame -> True, Joined -> True, FrameTicks -> None, 
      PlotStyle -> {Thick, Black}, ImageSize -> Large, 
      PlotLabel -> "Focus profile", 
      LabelStyle -> {Black, Bold, FontSize -> 16}]
     }]
   , {t, 0, 1, 1/100}];

ListAnimate[
 Join[frames1, Table[frames1[[-1]], {10}], Reverse@frames1, 
  Table[frames1[[1]], {5}] ] ]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#FiniteDifference-Apodization.webm
Category:Self-published work Category:Uploaded with video2commons Category:Videos of diffraction Category:Images with Mathematica source code
Category:CC-Zero Category:Images with Mathematica source code Category:Pages using deprecated source tags Category:Self-published work Category:Uploaded with video2commons Category:Videos of diffraction