File:Euler-disk.gif
Summary
Description |
English: In the absence of dissipation, a thin disk rolling without slipping on a flat surface will recover after each fall.
Notice that this system has non-holonomic constraints, so it can't be solved using a Lagrangian/Hamiltonian formalism. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1274366088889892864 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.0 code
M = 1.; g = 100.; R = 1.; I0 = 1.; Fx = 0; (*System parameters*)
I1 = I0/2 + M R^2; I2 = I0/2; I3 = I0 + M R^2;
L3[t_] := I3 (\[Psi]'[t] + \[Phi]'[t] Cos[\[Theta][t]])
sol = NDSolve[{
I1 \[Theta]''[t] == (-L3[t] + I2 \[Phi]'[t] Cos[\[Theta][t]]) \[Phi]'[t] Sin[\[Theta][t]] - M g R Cos[\[Theta][t]] + Fx R Sin[\[Theta][t]] Sin[\[Phi][t]],
I2 D[\[Phi]'[t] Sin[\[Theta][t]], t] == (L3[t] - I1 \[Phi]'[t] Cos[\[Theta][t]]) \[Theta]'[t],
D[L3[t], t] == M R^ 2 \[Theta]'[t] \[Phi]'[t] Sin[\[Theta][t]] - Fx R Cos[\[Phi][t]]
, (*Initial conditions (play around with them to get different dynamics) *)
\[Phi][0] == \[Pi]/2,
\[Theta][0] == \[Pi]/2,
\[Psi][0] == 0,
\[Phi]'[0] == 0,
\[Theta]'[0] == 0.01,
\[Psi]'[0] == 0.1
},
{\[Phi], \[Theta], \[Psi]}, {t, 0, 100}]
X[\[Tau]_] := NIntegrate[ Evaluate[R (\[Theta]'[t] Sin[\[Theta][t]] Sin[\[Phi][t]] - L3[t]/I3 Cos[\[Phi][t]]) /. sol], {t, 0, \[Tau]}][[1]]
Y[\[Tau]_] := NIntegrate[ Evaluate[-R (\[Theta]'[t] Sin[\[Theta][t]] Cos[\[Phi][t]] + L3[t]/I3 Sin[\[Phi][t]]) /. sol], {t, 0, \[Tau]}][[1]]
Z[t_] := Evaluate[ R Sin[\[Theta][t]] /. sol][[1]]
p0 = Table[
Show[
Graphics3D[{
Darker@Green,
Polygon[{{-10, -10, 0}, {-10, 10, 0}, {10, 10, 0}, {10, -10, 0}, {-10, -10, 0}}]
}, Boxed -> False, ViewVector -> {5 {1, 1, 1}, {0, 0, 0}}, ViewAngle -> 50*Degree, Lighting -> "Neutral"]
,
MapAt[
GeometricTransformation[#,
TranslationTransform[{-Y[\[Tau]], X[\[Tau]], Z[\[Tau]]}] ] &,
MapAt[
GeometricTransformation[#,
EulerMatrix[ Evaluate[{\[Phi][t], \[Theta][t], \[Psi][t]} /. sol /. {t -> \[Tau]}][[1]]] ] &,
Show[
Graphics3D[{Black, Thick, Line[{{-R, 0, 0.01}, {R, 0, 0.01}}],
Line[{{0, R, 0.01}, {0, -R, 0.01}}],
Yellow, Cylinder[{{0, 0, 0 - 0.01}, {0, 0, 0 + 0.01}}, 1]
}]
], {1}]
, {1}]
]
, {\[Tau], 0.001, 15, 0.1}]; (*Might take a while to compute all the frames*)
ListAnimate[p0]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|