File:Coriolis.gif

Summary

Description
English: If your frame of reference is rotating, objects that are in fact moving in a straight line looks to you like they are bending sideways, like there was a lateral force acting on them (Coriolis force).
Date
Source https://twitter.com/j_bertolotti/status/1245346304454209536
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 12.0 code

\[Omega] = \[Pi]/2;
\[CapitalDelta] = 0.01;
sphr[t_] := Piecewise[{{0, t < 0.5}, {(t - 0.5)/Sqrt[2], 0.5 < t < 1.5}, {1/Sqrt[2], t >= 1.5}}];
landscape = {White, Table[Sphere[{RandomReal[{-4, 4}], RandomReal[{-4, 4}], 0.05}, 0.05], {40}]};
p0 = Table[
   GraphicsRow[{
     Graphics3D[{
       Purple, Table[Sphere[{sphr[\[Tau]], sphr[\[Tau]], 0.11}, 0.02], {\[Tau], 0.5, t, \[CapitalDelta]}], Sphere[{sphr[t], sphr[t], 0.2}, 0.1],
       landscape,
       Lighter@Gray, Cylinder[{{0, 0, 0}, {0, 0, 0.1}}, 1],
       Darker@Green, Cylinder[{{0, 0, 0}, {0, 0, -0.1}}, 10],
       Black, Thickness[0.009], Thick, Sphere[{0, 0, 0.1}, 0.05], 
       Line[{{-Cos[\[Omega] t], -Sin[\[Omega] t], 0.1}, {Cos[\[Omega] t], Sin[\[Omega] t], 0.1}}], 
       Line[{{-Cos[\[Omega] t + \[Pi]/2], -Sin[\[Omega] t + \[Pi]/2], 0.1}, {Cos[\[Omega] t + \[Pi]/2], Sin[\[Omega] t + \[Pi]/2], 0.1}}]
       }, Lighting -> "Neutral",  
      ViewVector -> {{3, 0, 1.5}, {0, 0, 0}}, ViewVertical -> {0, 0, 1}, ViewAngle -> 50*Degree, Boxed -> False, Background -> Black]
     ,
     Graphics3D[{
       Purple, Table[Sphere[{sphr[\[Tau]]*Sqrt[2] Cos[\[Omega] (t - \[Tau]) + \[Pi]/4], sphr[\[Tau]]*Sqrt[2] Sin[\[Omega] (t - \[Tau]) + \[Pi]/4], 0.11}, 0.02], {\[Tau], 0, t, \[CapitalDelta]}], 
       Sphere[{sphr[t], sphr[t], 0.2}, 0.1],
       landscape,
       Lighter@Gray, Cylinder[{{0, 0, 0}, {0, 0, 0.1}}, 1],
       Darker@Green, Cylinder[{{0, 0, 0}, {0, 0, -0.1}}, 10],
       Black, Thickness[0.009], Sphere[{0, 0, 0.1}, 0.05], 
       Line[{{-Cos[\[Omega] t], -Sin[\[Omega] t], 0.11}, {Cos[\[Omega] t], Sin[\[Omega] t], 0.11}}], 
       Line[{{-Cos[\[Omega] t + \[Pi]/2], -Sin[\[Omega] t + \[Pi]/2], 0.1}, {Cos[\[Omega] t + \[Pi]/2], Sin[\[Omega] t + \[Pi]/2], 0.1}}]
       }, Lighting -> "Neutral",  ViewVector -> {{3 Cos[\[Omega] t], 3 Sin[\[Omega] t], 1.5}, {0, 0, 0}}, ViewVertical -> {0, 0, 1}, ViewAngle -> 50*Degree, Boxed -> False, Background -> Black]
     }]
   , {t, 0, 1.5, 1/20}];
ListAnimate[p0]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Coriolis.gif
Category:Self-published work Category:Animations of classical mechanics Category:Animations of kinematics Category:Coriolis force Category:Images with Mathematica source code Category:Animated GIF files
Category:Animated GIF files Category:Animations of classical mechanics Category:Animations of kinematics Category:CC-Zero Category:Coriolis force Category:Images with Mathematica source code Category:Pages using deprecated source tags Category:Self-published work