File:Anderson Localisation VS Wavelength.webm
Summary
Description |
English: Contrary to periodic structures, disordered ones do not have true band-gaps. But still, if the scattering is strong enough, most wavelengths can not propagate inside a disordered structure either, due to a phenomenon known as "Anderson Localization". If we change slowly the incident wavelength (shown by the white sinusoidal in the bottom corner), we see that most wavelengths penetrate very little, but for some there is a randomly generated mode inside the system to couple to. These modes are very narrow in frequency, so even by scanning the wavelength very slowly, they appear and disappear in a blink. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1415954452146757636 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.0 code
\[Lambda]0 = 0.5; k0 = N[(2 \[Pi])/\[Lambda]0]; (*The wavelength in vacuum is set to 1, so all lengths are now in units of wavelengths*)
\[Delta] = \[Lambda]0/10; \[CapitalDelta] = 50*\[Lambda]0; (*Parameters for the grid*)
ReMapC[x_] := RGBColor[(2 x - 1) UnitStep[x - 0.5], 0, (1 - 2 x) UnitStep[0.5 - x]];
\[Sigma] = 7 \[Lambda]0;
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)
imn = Table[
Chop[5 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d))], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Imaginary part of the refractive index (used to emulate absorbing boundaries)*)
dim = Dimensions[imn][[1]];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)
ren0 = 2;
ren = ren0*Clip[Total[Table[RotateRight[DiskMatrix[2, dim], {RandomInteger[{-Round[dim/2], Round[dim/2] }], RandomInteger[{ -Round[dim/4], Round[dim/2] - 10}]}], {2000}]], {0, 1}] + 1;
n = ren + I imn;
\[Lambda] =.;
frames = Table[
k = N[(2 \[Pi])/\[Lambda]];
sourcef[x_, y_] := E^(-(x^2/(2 \[Sigma]^2))) E^(-((y + \[CapitalDelta]/2)^2/(2 (\[Lambda]/2)^2))) E^(I k y);
\[Phi]in = Table[Chop[sourcef[x, y] ], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
b = -(Flatten[n]^2 - 1) k^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi] = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
ArrayPlot[Transpose[(Re@\[Phi]/1)][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], DataReversed -> True, Frame -> False, PlotRange -> {-2, 2}, LabelStyle -> {Black, Bold}, ColorFunctionScaling -> True, ColorFunction -> ReMapC, ClippingStyle -> {Blue, Red}]
,
ArrayPlot[Transpose[(ren - 1)/20] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
,
ArrayPlot[RotateRight[Transpose@Table[If[Abs[x - Sin[k y]] < 0.15 && -(\[CapitalDelta]/4) < y < 0, 1, 0], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/ 2, \[Delta]}], {-120, 200}], ColorFunction -> GrayLevel, Frame -> False, DataReversed -> True]
]
, {\[Lambda], 1.5, 2., 0.0025}];
ListAnimate[frames,5]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|