Mandelbrot set
English: The Mandelbrot set, a fractal, named after its creator the French mathematician Benoît Mandelbrot. The set is a map of the Julia set.
Polski: Zbiór Mandelbrota, fraktal, nazwany imieniem francuskiego matematyka. Zbiór ten jest mapą zbiorów Julii.
Slovenščina: Mandelbrotova množica je fraktal, imenovan po avtorju francoskem matematiku Mandelbrotu. Gre za karto Juliajeve množice.
Українська: Множина Мандельброта
Category:Uses of Wikidata Infoboxfractal named after mathematician Benoit Mandelbrot | |||||
Upload media | |||||
Instance of |
| ||||
---|---|---|---|---|---|
Part of |
| ||||
Named after | |||||
Based on | |||||
| |||||
![]() |
- Benoît Mandelbrot and the set bearing his name
General
- Hi-resolution Mandelbrot set with axes
- Mandelbrot set and periodicities of orbits
- Mandelbrot set and colorcoded periodicities of orbits
- Mandelbrot set with well defined colour stripes
- Mandelbrot set with irregular colour stripes
- Mandelbrot set in grayscale
- Mandelbrot set with smooth color gradient
- Mandelbrot zoom
- Inside colour-mapping, (B&W version).
- Inside colour-mapping, (colour version).
- Screenshot von RFL Mandelbrot Set Exploration Tool v0.0.4
- Visualization of Mandelbrot set in complex plane
- Command-line depiction of the Mandelbrot set.
- Yet another image of the Mandelbrot Set.
- Representation of Inner Structure
- colors
Structure
- Boundaries of hyperbolic components of mandelbrot set
- Lemniscates - boundaries of level sets of escape time
- Centers of hyperbolic components
- All boundaries of level sets of escape time up from n=1
Rays
- External and internal rays, center and root
- External rays of Misiurewicz point
- External ray of Misiurewicz point c=-2
- Uniformization of complement of Mandelbropt set
- Wakes near the period 1 continent in the Mandelbrot set
- Wakes along the main antenna in the Mandelbrot set
Fractalizer
Zoom
- Initial image of a zoom sequence with 14 steps
- Initial image of a corresponding zoom sequence with frames
- Zoom step 1 of 14
- Zoom step 1 of 13
- Zoom step 2 of 14
- Zoom step 2 of 13
- Zoom step 3 of 14
- Zoom step 3 of 13
- Zoom step 4 of 14
- Zoom step 4 of 13
- Zoom step 5 of 14
- Zoom step 5 of 13
- Zoom step 6 of 14
- Zoom step 6 of 13
- Zoom step 7 of 14
- Zoom step 7 of 13
- Zoom step 8 of 14
- Zoom step 8 of 13
- Zoom step 9 of 14
- Zoom step 9 of 13
- Zoom step 10 of 14
- Zoom step 10 of 13
- Zoom step 11 of 14
- Zoom step 11 of 13
- Zoom step 12 of 14
- Zoom step 12 of 13
- Zoom step 13 of 14
- Zoom step 13 of 13
- Zoom step 14 of 14
- Mandelbrot (Ausschnitt)
- Mandelbrot (Ausschnitt)
- Zooming Movie 03
- Zooming movie 04
- Zooming movie 06
- Zooming movie 15
- High-resolution zoom
- Featured golden gradient zoom on the Mandelbrot set by more than 31 orders of magnitude.
Iteration
- At a count of 32, the whole image is black, since it is completely inside the false-negative contour.
- If we allow 64 iterations, some points are no longer falsely inside the set.
- At 128 iterations, the image is blobby, but recognizable as a fractal.
- 256
- At 512, we get a nice image. The black dots up and to the left of each "wart" contain tiny cardioids.
- 1024
- 2048
- Diminishing returns are quite obvious when we use a million iterations. Even with periodicity checking, this one took 10–15 seconds to generate on an Athlon XP 2000+.
- Number of iterations changing from 1 to 50.
Some details of the Mandelbrot set
- side=0.582; lower-left-point=-0.4+0.5i (made using a JAVA applet archive copy at the Wayback Machine)
- side=0.0017815; lower-left-point=-0.75+0.06i (made using a JAVA applet archive copy at the Wayback Machine)
- side=0.004402; lower-left-point=0.28+0.0084i (made using a JAVA applet archive copy at the Wayback Machine)
- side=0.000191; lower-left-point=-0.78-0.136i (made using a JAVA applet archive copy at the Wayback Machine)
- side=0.00004; lower-left-point=-1.595+0.000095i (made using a JAVA applet archive copy at the Wayback Machine)
- side=0.0001558; lower-left-point=-0.75+0.064i (made using a JAVA applet archive copy at the Wayback Machine)
- side=0.0000829; lower-left-point=0.253-0.0031i (made using a JAVA applet archive copy at the Wayback Machine)
- side=0.0166; lower-left-point=-1.042-0.0346i (made using a JAVA applet archive copy at the Wayback Machine)
- center=-0.745-0.1i
Art] and the Mandelbrot set
- Calm Mandelbrot, magnified 100,458,337,236 times, 256 iterations
- Cool Mandelbrot, magnified 248,034,982,258 times, 256 iterations
- Hot Mandelbrot, magnified 261,880 times, 1024 iterations
- Galaxy of Galaxies
- Rendered with a scenery generator
Universality of Mandelbrot set
- Mandelbrot sets occurring in the analysis of Newton's method
- Mandelbrot set occurring in the analysis of Newton's method (detail)
- Mandelbrot set occurring in the analysis of Newton's method (detail)
- Mandelbrot set occurring in a model of phase transitions (detail)
- Mandebrot set embedded in cos(z)+c.
- Mandebrot set embedded in gaussian exp(-z^2)+c.
Miscellaneous
- Comparing functions, Mandel/Bifurcation.
- Periodic cycles in the Mandelbrot set
- Mandelbrot, plane: 1/lambda
- Relation between Mandelbrot set and en:logistic map
- Multibrot sets
- Map of Julia sets showing the resemblance with the Mandelbrot set
- Mandelbulber v2.23
- High-resolution Buddhabrot rendering of the Mandelbrot set
First steps in Mandelbrot set
- 1.step of Ms
- 2.step of Ms
- 3.step of Ms
- 4.step of Ms
- 5.step of Ms
- 9.step of Ms
- 30.step of Ms
- part of 30.step of Ms
- step 1
- step 2
- step 3
- step 4
- step 5
- step 6
- step 7
- step 8
- step 9
- step 10
- step 11
- step 12
- step 13
- step 14
- step 15
- step 16
- step 17
- step 18
- step 19
- step 20