File:MDKQ anim3.svg
Summary
Description |
Deutsch: Teilbild einer Animation Polynomapproximation unterschiedlicher Polynomordnung |
Date | |
Source | MDKQ anim.gif |
Author | Johannes Kalliauer |
Other versions | File:MDKQ_anim.gif |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|
Quellen: Skript zur Bildgenerierung
Erzeugungsskript, um die Grafik zu erstellen.
Anleitung
Benötigte Open-Source-Software:
- Python archive copy at the Wayback Machine
- Python-Paket: numpy
- Python-Paket: matplotlib
Nach der Installation von Python den Quelltext in eine Datei mdkq.py kopieren und starten durch Doppelklicken oder in der Konsole durch Eingabe von
python mdkq.py
Python-Skript
Category:Valid SVG created with Matplotlib#MDKQ%20anim3.svg#This source code is public domain
import numpy, pylab
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from numpy.random import randn
x=[1,2,3,4,5,6,7]
y=[2.0,2.5,2.5,3.4,3.7,6.6,3]
for N in range(1,8):
A=numpy.zeros((N,N))
for i in range(N):
for j in range(N):
A[i,j]=sum(xi**(i+j) for xi in x)
b=numpy.zeros((N))
for i in range(N):
b[i]=sum(xi**(i)*yi for xi,yi in zip(x,y))
c=numpy.linalg.solve(A, b)
xr=numpy.asarray(x)
yr=numpy.sum([c[i]*xr**i for i in range(len(c))],axis=0)
residuen=[]
for i in range(len(x)): residuen+=[[xr[i],xr[i]],[y[i],yr[i]],'g-']
xneu=numpy.linspace(0, 8, num=100)
yneu=numpy.sum([c[i]*xneu**i for i in range(len(c))],axis=0)
plt.clf()
fig = plt.figure(figsize=(4.5, 3.5))
fig.subplotpars.bottom=0.13
y0=plt.plot(*residuen[:-3])
plt.setp(y0, color='#80d080', linewidth=1.5)
#y0=plt.plot(*residuen[-3:], label="Residuen")
y0,=plt.plot(*residuen[-3:])
plt.setp(y0, color='#80d080', linewidth=1.5)
#y2=plt.plot(xneu,yneu,'r-', label="Modellfunktion")
y2,=plt.plot(xneu,yneu,'r-')
#y1=plt.plot(x,y,'o', label="Messpunkte")
y1,=plt.plot(x,y,'o')
plt.xlabel('x')
plt.ylabel('y')
font = FontProperties()
font.set_size('medium')
leg = plt.legend([y1,y2,y0],['Messpunkte','Modellfunktion','Residuen'],frameon=True,loc='lower right',labelspacing=0.3,prop=font)
#leg = plt.legend(frameon=True,loc='lower right',labelspacing=0.3,prop=font)
plt.grid(True)
plt.axis([0, 8, 0, 8])
plt.text(1,7, "Polynomgrad "+str(N-1),bbox=dict(boxstyle="square,pad=0.5",color='white',ec='black',fill=True))
#plt.show()
plt.savefig('MDKQ_anim%i.png'%N)
plt.savefig('test.eps', format='eps', dpi=900)
plt.savefig("MDKQ_anim%i.svg"%N)