File:Second order transfer function.svg
Summary
| Description |
English: Step responses for a second order system defined by the transfer function:
where is the damping ratio and is the undamped natural frequency. The equations were obtained from here, plotted using maxima and edited in a text editor to insert the Greek alphabets in the plot. The equations are: |
| Date | |
| Source | Own work |
| Author | Krishnavedala |
| SVG development |
Source code

This media was created with Python (general-purpose programming language)Category:Images with Python source code and NumPy (numerical programming package for the Python programming language)Category:Images with NumPy source code and Matplotlib (comprehensive library for creating static, animated, and interactive visualizations in Python)Category:Images with Matplotlib source code
Here is a listing of the source used to create this file.
Here is a listing of the source used to create this file.
from matplotlib.pyplot import *
from numpy import *
wt = linspace(0,15,100)
b = lambda z: sqrt(1. - z**2)
t = lambda z: arctan(b(z)/z)
h1 = lambda wt,z: 1. - exp(-z*wt)*sin(b(z)*wt+t(z))/b(z)
h2 = lambda wt: 1. - cos(wt)
h3 = lambda wt: 1. - exp(-wt)*(1.+wt)
s1 = lambda z: (z + sqrt(z**2-1.))
s2 = lambda z: (z - sqrt(z**2-1.))
h4 = lambda wt,z: 1. + ( (exp(-s1(z)*wt)/s1(z)) - \
(exp(-s2(z)*wt)/s2(z)) ) / (2.*sqrt(z**2-1.))
fig = figure(figsize=(8,4))
ax = fig.add_subplot(111)
ax.grid(True)
ax.plot(wt,h2(wt),'g',label=r"undamped $(\zeta=0)$")
ax.plot(wt,h1(wt,.5),'b',label=r"under $(\zeta=0.5)$")
ax.plot(wt,h3(wt),'r',label=r"critical $(\zeta=1.0)$")
ax.plot(wt,h4(wt,1.5),'m',label=r"over $(\zeta=1.5)$")
ax.set_ylim(0,2)
ax.minorticks_on()
leg = ax.legend(frameon=False,handletextpad=.05)
setp(leg.get_texts(),fontsize=10)
ax.set_xlim(0,15)
ax.set_xlabel(r"$\omega t$",fontsize=15)
ax.set_ylabel("Step response",fontsize=12)
fig.savefig("Second_order_transfer_function.svg",bbox_inches="tight",\
pad_inches=.15)
Source code

This media was created with Maxima (computer algebra system)Category:Images with Maxima source code
Here is a listing of the source used to create this file.
Here is a listing of the source used to create this file.
beta(zeta) := sqrt(1-zeta^2);
theta(zeta) := atan(beta(zeta)/zeta);
h_under(wt) := 1 - beta(0.5)^-1*exp(-0.5*wt)*sin(wt*beta(.5)+theta(0.5));
h_un(wt) := 1 - cos(wt);
h_crit(wt) := 1 - exp(-wt) * (1+wt);
s1(zeta) := zeta+sqrt(zeta^2-1);
s2(zeta) := zeta-sqrt(zeta^2-1);
h_over(wt) := 1 + ((exp(-s1(1.5)*wt)/s1(1.5))-(exp(-s2(1.5)*wt)/s2(1.5)))/(2*sqrt(1.5^2-1));
load(draw);
draw2d(dimensions=[800,400],terminal=svg,
user_preamble="set mxtics; set mytics;",
grid=true, yrange=[0,2], xlabel="omega t",
line_width=1.5, ylabel="Step response",
key="under (zeta=0.5)",color=blue,explicit(h_under(wt),wt,0,15),
key="critical (zeta=1)",color=red,explicit(h_crit(wt),wt,0,15),
key="over (zeta=1.5)",color=magenta,explicit(h_over(wt),wt,0,15),
key="undamped (zeta=0)",color=green,explicit(h_un(wt),wt,0,15)
);
Licensing
Krishnavedala, the copyright holder of this work, hereby publishes it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Attribution:
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0
Category:Filter diagrams
Category:Images with Matplotlib source code
Category:Images with Maxima CAS source code
Category:Images with Maxima source code
Category:Images with NumPy source code
Category:Images with Python source code
Category:SVG created with Matplotlib
Category:Self-published work
Category:Step responses
Category:Valid SVG created with Other tools:Unicode