File:Lattice diagram of Q adjoin a cube root of 2 and a primitive cube root of 1, its subfields, and Galois groups.svg
Summary
Description | |
Source |
Created in LaTeX by the following code: \documentclass[12pt]{article}
\thispagestyle{empty}
\usepackage{tikz}
\usepackage{amsfonts}
\begin{document}
\begin{tikzpicture}[node distance=2cm]
\node (Qw-o) {$\mathbb{Q}(\omega, \theta)$};
\node (Qo) [below of=Qw-o] {$\mathbb{Q}(\theta)$};
\node (Qwo) [right of=Qo] {$\mathbb{Q}(\omega \theta)$};
\node (Qw2o) [right of=Qwo] {$\mathbb{Q}(\omega^2 \theta)$};
\node (Qw) [below left of=Qo] {$\mathbb{Q}(\omega)$};
\node (Q) [below right of=Qw] {$\mathbb{Q}$};
\node (1ff2) [below right of=Qw2o] {$\{1, f, f^2\}$};
\node (1g) [above right of=1ff2] {$\{1, g\}$};
\node (1gf) [right of=1g] {$\{1, gf\}$};
\node (1gf2) [right of=1gf] {$\{1, gf^2\}$};
\node (G) [below right of=1ff2] {$\{1, f, f^2, g, gf, gf^2\}$};
\node (1) [above of=1g] {$\{1\}$};
\draw (Q) -- (Qo);
\draw (Q) -- (Qw);
\draw (Q) -- (Qwo);
\draw (Q) -- (Qw2o);
\draw (Qo) -- (Qw-o);
\draw (Qw) -- (Qw-o);
\draw (Qwo) -- (Qw-o);
\draw (Qw2o) -- (Qw-o);
\draw (G) -- (1ff2);
\draw (G) -- (1g);
\draw (G) -- (1gf);
\draw (G) -- (1gf2);
\draw (1ff2) -- (1);
\draw (1g) -- (1);
\draw (1gf) -- (1);
\draw (1gf2) -- (1);
\end{tikzpicture}
\end{document}
|
Author | Self |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.