File:Intercept theorem vectors.svg

Summary

Description
English: Displays a vector parallelogram and its relation to the intercept theorem
Date
Source Own work
Author Qef
Other versions Original bitmap version: en:File:Intercept theorem vectors.png
SVG development
InfoField
 
The SVG code is valid.
 
This vector image was created with MetaPost.
Category:Valid SVG created with MetaPost code#Intercept%20theorem%20vectors.svg
 
The file size of this SVG image may be irrationally large because its text has been converted to paths inhibiting translations.
Category:Path text SVG
Source code
InfoField

PostScript code

prologues := 3;
input boxes

beginfig(1);
pickup pencircle scaled 1pt;

pair va, vb;
va = (100mm,0);  vb = (10mm,30mm);
numeric p;
p = 2/5;

z0 = (0,0);     % corners of main box
z1 = z0 + va;
z2 = z0 + vb;
z3 = z0 + va + vb;

ahlength:=ahlength*1.3;
drawarrow z0--p[z0,z1];  drawarrow p[z0,z1]--z1;
drawarrow z0--p[z0,z2];  drawarrow p[z0,z2]--z2;
drawarrow z0--p[z0,z3];  drawarrow p[z0,z3]--z3;

linecap:=butt;
draw z1--z3 dashed evenly scaled 2;
draw z2--z3 dashed evenly scaled 2;
draw p[z0,z1]--p[z2,z3] dashed evenly scaled 2;
draw p[z0,z2]--p[z1,z3] dashed evenly scaled 2;

dotlabel.bot(btex$ \vec a $etex, p[z0,z1]);
dotlabel.bot(btex$ \lambda \cdot \vec a $etex, z1);
dotlabel.lft(btex$ \vec b $etex, p[z0,z2]);
dotlabel.lft(btex$ \lambda \cdot \vec b $etex, z2);
label.rt(btex$ \|\vec b\| $etex, .5[p[z0,z1], p[z0,z3]]);
label.top(btex$ \|\vec a\| $etex, .5[p[z0,z2], p[z0,z3]]);
label.ulft(btex$ \vec a + \vec b $etex, p[z0,z3]);
label.top(btex$ |\lambda| \cdot \|\vec a\| $etex, p[z2,z3]);
label.rt(btex$ |\lambda| \cdot \|\vec b\| $etex, p[z1,z3]);
label.urt(btex$ \lambda \cdot (\vec a + \vec b) $etex, z3);

endfig;

end

Data

mpost fig.mp
ps2pdf -dEPSCrop fig.1 fig.pdf
pstoedit -page 1 -dt -xscale 2 -yscale 2 -f sk fig.pdf fig.sk
inkscape -z --vacuum-defs -f fig.sk -l fig.svg

Licensing

Public domain This work has been released into the public domain by its author, Qef. This applies worldwide.

In some countries this may not be legally possible; if so:
Qef grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Category:PD-user#Intercept%20theorem%20vectors.svg Category:Intercept theorem
Category:Intercept theorem Category:PD-user Category:Path text SVG Category:Valid SVG created with MetaPost code