File:HypComp3.png

Summary

Description
English: Images of unit circle under 3 maps
Polski: obraz koła jednostkowego po zastosowaniu 3 funkcji
Date 11 October 2008 (upload date)
Source Own work by uploader in Maxima and Gnuplot with help of many people ( see references )
Author Adam majewski

Long description

conformal mapping from : the circle with center=0 and radius=1

given by equation :

where :

onto boundary of 3 period 3 hyperbolic components of Mandelbrot set[1] is given by 3 equations :

code of functions gamma by Robert P. Munafo[2].

These functions are computed in Maxima from boundary equation [3]

(%i3) b3:c^3+2*c^2+(1-P)*c+(P-1)^2=0$
(%i4) solve(b3,c);
(%o4) [c=(-(sqrt(3)*%i)/2-1/2)*(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3)+
(((sqrt(3)*%i)/2-1/2)*(3*P+1))/(9*(((P-  1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3))-2/3,c=((sqrt(3)*%i)/2-1/2)*
(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3)+
((-(sqrt(3)*%i)/2-1/2)*(3*P+1))/(9*(((P-1)*sqrt(27*P^2-22*P+23)) /(6*sqrt(3))-
(27*P^2-36*P+25)/54)^(1/3))-2/3,c=(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3)+
(3*P+1)/(9*(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3))

Purpose of this file

To show that every functions maps one half of one component and one half of other component.

Discussion

Similar problem is in Mathematica code[4]

It is possible to solve it another way : one function for one component[5]

Maxima source code

NmbrOfPnts:400;
/* ------------------------ definitions -------------------------*/
/* code of functions gamma by Robert P. Munafo */
/* conformal maps from circle to period 3 components  */
gamma3a(P):=(-(sqrt(3)*%i)/2-1/2)*(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3)+
(((sqrt(3)*%i)/2-1/2)*(3*P+1))/(9*(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3))-2/3;
g3a(w):=gamma3a(w/8);
gamma3b(P):=((sqrt(3)*%i)/2-1/2)*(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3)+
((-(sqrt(3)*%i)/2-1/2)*(3*P+1))/(9*(((P-  1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3))-2/3;
g3b(w):=gamma3b(w/8);
gamma3c(P):=(((P-1)*sqrt(27*P^2-22*P+23))/(6*sqrt(3))-(27*P^2-36*P+25)/54)^(1/3)+(3*P+1)/(9*(((P-1)*sqrt(27*P^2-22*P+23))/
(6*sqrt(3))-    (27*P^2-36*P+25) /54)^(1/3))-2/3; 
g3c(w):=gamma3c(w/8);
/* exponential for of complex number with angle in turns */
l(t,r):=r*%e^(%i*t*2*%pi);
/* ------------------------- */
GiveIntRayOfCircleL(angle,NmbrOfPnts):=
makelist(rectform(ev(l(angle,j/NmbrOfPnts), numer)),j, 0,NmbrOfPnts);
/* ---------------------- */
GiveUnitCircleL(NmbrOfPnts):=
makelist(rectform(ev(l(j/NmbrOfPnts,1), numer)),j, 0,NmbrOfPnts);
/* ------------------  computes points of circle and ray ------------------*/
circleList:GiveUnitCircleL(100); 
/* ------------------- conformal mapping from  circle to 3 period 3 components ----------------*/
c3aList:map(g3a, circleList);
c3bList:map(g3b, circleList);
c3cList:map(g3c, circleList);
/* ---------- ------------ drawing -------------------------*/
load(draw); /* Mario Rodríguez Riotorto   http://www.telefonica.net/web2/biomates/maxima/gpdraw/index.html archive copy at the Wayback Machine */
draw(file_name = "hypComp3",
pic_width=1000, 
pic_height= 500,
terminal  = 'png,
columns  = 2,
gr2d(title = " unit circle D={w:abs(w)=1 } in standard plane ",
 points_joined =true,
 color         = red,
 point_type = 0,
 points(map(realpart,circleList),map(imagpart,circleList))
 ),
gr2d(title      = "3 images of circle under 3 maps gamma3(w) in parameter plane",
 points_joined =false,
 color         = blue,
 point_type = 0,
 points(map(realpart,c3aList),map(imagpart,c3aList)),
 color         = green,
 points(map(realpart,c3bList),map(imagpart,c3bList)),
 color         = magenta,
 points(map(realpart,c3cList),map(imagpart,c3cList)))  );

References

  1. Boundaries of 53 hyperbolic components of Mandelbrot set for periods 1-6 made with polynomial maps from the unit circle
  2. MuEncy by Robert P. Munafo
  3. Computing boundary of hyperbolic components from boundary equations
  4. Walter Hannah thesis, see page 11
  5. A Parameterization of the Period 3 Hyperbolic Components of the Mandelbrot Set Dante Giarrusso; Yuval Fisher Proceedings of the American Mathematical Society, Vol. 123, No. 12. (Dec., 1995), pp. 3731-3737

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0#HypComp3.png
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
Category:License migration redundant#HypComp3.pngCategory:GFDL#HypComp3.png
You may select the license of your choice.
Category:Self-published work
Category:Gnuplot graphics Category:Complex analysis Category:Mandelbrot set properties Category:Images with Maxima CAS source code
Category:CC-BY-SA-3.0 Category:Complex analysis Category:GFDL Category:Gnuplot graphics Category:Images with Maxima CAS source code Category:License migration redundant Category:Mandelbrot set properties Category:Self-published work