File:Chain homotopy.svg
LaTeX source
\documentclass{amsart} \usepackage{amsmath,amssymb,nopageno} \usepackage[all]{xy} \begin{document} \begin{equation*} \xymatrix@+3em{ {\dots} \ar[r]^{d_A^{n - 2}} & A^{n - 1} \ar[r]^{d_A^{n - 1}} \ar@<0.5ex>[d]^{g^{n - 1}} \ar@<-0.5ex>[d]_{f^{n - 1}} \ar[dl]|*+<1ex,1ex>{\scriptstyle h^{n - 1}} & A^n \ar[r]^{d_A^n} \ar@<0.5ex>[d]^{g^n} \ar@<-0.5ex>[d]_{f^n} \ar[dl]|*+<1ex,1ex>{\scriptstyle h^n} & A^{n + 1} \ar[r]^{d_A^{n + 1}} \ar@<0.5ex>[d]^{g^{n + 1}} \ar@<-0.5ex>[d]_{f^{n + 1}} \ar[dl]|*+<1ex,1ex>{\scriptstyle h^{n + 1}} & {\dots} \ar[dl]|*+<1ex,1ex>{\scriptstyle h^{n + 2}}\\ {\dots} \ar[r]^{d_B^{n - 2}} & B^{n - 1} \ar[r]^{d_B^{n - 1}} & B^n \ar[r]^{d_B^n} & B^{n + 1} \ar[r]^{d_B^{n + 1}} & {\dots} } \end{equation*} \end{document}
Summary
Description |
Let A be an additive category. The homotopy category K(A) is based on the following definition: if we have complexes A, B and maps f, g from A to B, a chain homotopy from f to g is a collection of maps (not a map of complexes) such that
|
||
Date | 19 March 2007, 2008-02-06 | ||
Source | Image:Chain homotopy.jpg | ||
Author | User:Ryan Reich, User:Stannered | ||
Permission (Reusing this file) |
|
||
Other versions | Image:Chain homotopy.jpg | ||
SVG development |