File:Chain homotopy.svg

LaTeX source

\documentclass{amsart}
\usepackage{amsmath,amssymb,nopageno}
\usepackage[all]{xy}
\begin{document}
\begin{equation*}
\xymatrix@+3em{
{\dots} \ar[r]^{d_A^{n - 2}}
	& A^{n - 1}
		\ar[r]^{d_A^{n - 1}}
		\ar@<0.5ex>[d]^{g^{n - 1}}
		\ar@<-0.5ex>[d]_{f^{n - 1}}
		\ar[dl]|*+<1ex,1ex>{\scriptstyle h^{n - 1}}
	& A^n
		\ar[r]^{d_A^n}
		\ar@<0.5ex>[d]^{g^n}
		\ar@<-0.5ex>[d]_{f^n}
		\ar[dl]|*+<1ex,1ex>{\scriptstyle h^n}
	& A^{n + 1}
		\ar[r]^{d_A^{n + 1}}
		\ar@<0.5ex>[d]^{g^{n + 1}}
		\ar@<-0.5ex>[d]_{f^{n + 1}}
		\ar[dl]|*+<1ex,1ex>{\scriptstyle h^{n + 1}}
	& {\dots}
		\ar[dl]|*+<1ex,1ex>{\scriptstyle h^{n + 2}}\\
{\dots} \ar[r]^{d_B^{n - 2}}
	& B^{n - 1} \ar[r]^{d_B^{n - 1}}
	& B^n \ar[r]^{d_B^n}
	& B^{n + 1} \ar[r]^{d_B^{n + 1}}
	& {\dots}
}
\end{equation*}
\end{document}

Summary

Description

Let A be an additive category. The homotopy category K(A) is based on the following definition: if we have complexes A, B and maps f, g from A to B, a chain homotopy from f to g is a collection of maps (not a map of complexes) such that

or simply
This can be depicted as shown in the diagram.
Date 19 March 2007, 2008-02-06
Source Image:Chain homotopy.jpg
Author User:Ryan Reich, User:Stannered
Permission
(Reusing this file)
Public domain This work has been released into the public domain by its author, Ryan Reich at English Wikipedia. This applies worldwide.
In some countries this may not be legally possible; if so:
Ryan Reich grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:PD-user#Chain%20homotopy.svg
Other versions Image:Chain homotopy.jpg
SVG development
InfoField
 
The SVG code is valid.
 
This diagram was created with an unknown SVG tool.
Category:Valid SVG created with Other tools:Diagrams#Chain%20homotopy.svg
Category:SVG commutative diagrams Category:Homological algebra Category:Images with LaTeX source code Category:Complexes (algebra)
Category:Complexes (algebra) Category:Homological algebra Category:Images with LaTeX source code Category:PD-user Category:SVG commutative diagrams Category:Valid SVG created with Other tools:Diagrams