File:Non-analytic smooth function.png

Description Illustration of an non-analytic smooth function
Date (UTC)
Source self-made with MATLAB
Author Oleg Alexandrov
Other versions

Image:An infinitely differentiable function which is not analytic illustration.png

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#Non-analytic%20smooth%20function.pngCategory:PD-self#Non-analytic%20smooth%20function.png

Source code (MATLAB)

% Illustration of an [[:en:Non-analytic smooth function|non-analytic smooth function]]
function main()

   thickness1=2.5; thickness2=1.5; arrowsize=0.15; arrow_type=1; ball_rad=0.03; arrow_angle=35;
   blue = [0, 129, 205]/256; black=[0 0 0]; fontsize=floor(20); dist=0.01;
   
   a=-1; b=5;
   h=0.01;
   X=a:h:b;
   Y=zeros(length(X), 1);
   for i=1:length(X)
      x=X(i);
      if x <= 0
	 Y(i)=0;
      else 
         Y(i)=exp(-1/x);
      end
   end

   
   figure(1);  clf; hold on; axis equal; axis off

   arrow([a 0], [b+0.2, 0], thickness2, arrowsize, arrow_angle, arrow_type, [0, 0, 0])
   arrow([0 -0.3], [0 2.*max(Y)], thickness2, arrowsize, arrow_angle, arrow_type, [0, 0, 0])
   plot(X, Y, 'linewidth', thickness1, 'color', blue);
   plot(X, 0*Y+1, 'linewidth', thickness2/1.5, 'color', black, 'linestyle', '--');
   arrow([b+0.1 0], [b+0.2, 0], thickness2, arrowsize, arrow_angle, arrow_type, [0, 0, 0])
   
   ball(0, 0, ball_rad, blue); place_text_smartly(0, fontsize, 5, dist, '0');
   ball(0, 1, ball_rad, black); place_text_smartly(sqrt(-1), fontsize, 5, dist, '1');

saveas(gcf, 'Non-analytic_smooth_function.eps', 'psc2')

function place_text_smartly (z, fs, pos, d, tx)
 p=cos(pi/4)+sqrt(-1)*sin(pi/4);
 z = z + p^pos * d * fs; 
 shiftx=0.0003;
 shifty=0.002;
 x = real (z); y=imag(z); 
 H=text(x+shiftx*fs, y+shifty*fs, tx); set(H, 'fontsize', fs, 'HorizontalAlignment', 'c', 'VerticalAlignment', 'c')


function ball(x, y, r, color)
   Theta=0:0.1:2*pi;
   X=r*cos(Theta)+x;
   Y=r*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);

function arrow(start, stop, thickness, arrow_size, sharpness, arrow_type, color)
   
% Function arguments:
% start, stop:  start and end coordinates of arrow, vectors of size 2
% thickness:    thickness of arrow stick
% arrow_size:   the size of the two sides of the angle in this picture ->
% sharpness:    angle between the arrow stick and arrow side, in degrees
% arrow_type:   1 for filled arrow, otherwise the arrow will be just two segments
% color:        arrow color, a vector of length three with values in [0, 1]
   
% convert to complex numbers
   i=sqrt(-1);
   start=start(1)+i*start(2); stop=stop(1)+i*stop(2);
   rotate_angle=exp(i*pi*sharpness/180);

% points making up the arrow tip (besides the "stop" point)
   point1 = stop - (arrow_size*rotate_angle)*(stop-start)/abs(stop-start);
   point2 = stop - (arrow_size/rotate_angle)*(stop-start)/abs(stop-start);

   if arrow_type==1 % filled arrow

      % plot the stick, but not till the end, looks bad
      t=0.5*arrow_size*cos(pi*sharpness/180)/abs(stop-start); stop1=t*start+(1-t)*stop;
      plot(real([start, stop1]), imag([start, stop1]), 'LineWidth', thickness, 'Color', color);

      % fill the arrow
      H=fill(real([stop, point1, point2]), imag([stop, point1, point2]), color);
      set(H, 'EdgeColor', 'none')
      
   else % two-segment arrow
      plot(real([start, stop]), imag([start, stop]),   'LineWidth', thickness, 'Color', color); 
      plot(real([stop, point1]), imag([stop, point1]), 'LineWidth', thickness, 'Color', color);
      plot(real([stop, point2]), imag([stop, point2]), 'LineWidth', thickness, 'Color', color);
   end
Category:Differentiability (functions) Category:Files by User:Oleg Alexandrov from en.wikipedia Category:Images with Matlab source code
This math image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.
It is recommended to name the SVG file “Non-analytic smooth function.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.
Category:Math images that should use vector graphics#%20Non-analytic%20smooth%20function.pngCategory:PNG that should use vector graphics
This math image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.
It is recommended to name the SVG file “Non-analytic smooth function.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.
Category:Math images that should use vector graphics#%20Non-analytic%20smooth%20function.pngCategory:PNG that should use vector graphics
Category:Differentiability (functions) Category:Files by User:Oleg Alexandrov from en.wikipedia Category:Images with Matlab source code Category:Math images that should use vector graphics Category:PD-self Category:PNG that should use vector graphics Category:Self-published work