File:Regression confidence band.svg

Summary

Description
English: Plot showing a regression fit to a simulated data set, along with 95% point-wise and simultaneous confidence bands.
Date
Source Own work
Author Skbkekas
Other versions

[edit]

SVG development
InfoField
Source code
InfoField

Python code

import numpy as np
import matplotlib.pyplot as plt
import scipy.special as sp

## Sample size.
n = 50

## Predictor values.
XV = np.random.uniform(low=-4, high=4, size=n)
XV.sort()

## Design matrix.
X = np.ones((n,2))
X[:,1] = XV

## True coefficients.
beta = np.array([0, 1.], dtype=np.float64)

## True response values.
EY = np.dot(X, beta)

## Observed response values.
Y = EY + np.random.normal(size=n)*np.sqrt(20)

## Get the coefficient estimates.
u,s,vt = np.linalg.svd(X,0)
v = np.transpose(vt)
bhat = np.dot(v, np.dot(np.transpose(u), Y)/s)

## The fitted values.
Yhat = np.dot(X, bhat)

## The MSE and RMSE.
MSE = ((Y-EY)**2).sum()/(n-X.shape[1])
s = np.sqrt(MSE)

## These multipliers are used in constructing the intervals.
XtX = np.dot(np.transpose(X), X)
V = [np.dot(X[i,:], np.linalg.solve(XtX, X[i,:])) for i in range(n)]
V = np.array(V)

## The F quantile used in constructing the Scheffe interval.
QF = sp.fdtri(X.shape[1], n-X.shape[1], 0.95)

## The lower and upper bounds of the Scheffe band.
D = s*np.sqrt(X.shape[1]*QF*V)
LB,UB = Yhat-D,Yhat+D

## The lower and upper bounds of the pointwise band.
D = s*np.sqrt(2*V)
LBP,UBP = Yhat-D,Yhat+D

## Make the plot.
plt.clf()
plt.plot(XV, Y, 'o', ms=3, color='grey')
plt.hold(True)
a = plt.plot(XV, EY, '-', color='black')
b = plt.plot(XV, LB, '-', color='red')
plt.plot(XV, UB, '-', color='red')
c = plt.plot(XV, LBP, '-', color='blue')
plt.plot(XV, UBP, '-', color='blue')
d = plt.plot(XV, Yhat, '-', color='green')
B = plt.legend( (a,d,b,c), ("Truth", "Estimate", "95% simultaneous CB",\
                            "95% pointwise CB"), 'lower left')
B.draw_frame(False)
plt.ylim([-20,15])
plt.gca().set_yticks([-20,-10,0,10,20])
plt.xlim([-4,4])
plt.gca().set_xticks([-4,-2,0,2,4])
plt.xlabel("X")
plt.ylabel("Y")
plt.savefig("regression_confidence_band.png")
plt.savefig("regression_confidence_band.svg")

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Category:CC-BY-3.0#Regression%20confidence%20band.svg
Category:Self-published work Category:Regression analysis
Category:CC-BY-3.0 Category:Regression analysis Category:Self-published work Category:Valid SVG created with Matplotlib code