File:Birthday paradox approximation.svg
Summary
Description |
English: A graph comparing the accuracy of an approximation of the probability that in a room with n people (shown along the horizontal axis), some two (or more) will share a birthday. The black line, represents the computed probability. The red line represents the approximation
Español: Comparación entre la probabilidad de que dos personas (o más) en un cuarto compartan su cumpleaños (línea negra) y la aproximación: |
Date | |
Source | Own work |
Author | Nicoguaro |
SVG development | |
Source code | Python code#from __future__ import division # Python 2
import numpy as np
from scipy.special import perm
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['font.family'] = 'serif'
rcParams['font.size'] = 14
num = np.linspace(1, 100, 100)
p = 1 - perm(365, num)/365.**num
p_approx = 1 - np.exp(-num**2/730)
plt.figure(figsize=(8, 5))
plt.step(num, p, "k", lw=2)
plt.plot(num, p_approx, "r", lw=1)
plt.xlabel(r"Number of people - $n$")
plt.ylabel("Probability of a pair")
plt.grid(True)
plt.legend([r"Probability: $\frac{365!}{365^n (365 - n)!}$",
r"Approximation: $1-e^\frac{-n^2}{2\cdot 365}$"], loc=4)
plt.savefig("Birthday paradox approximation.svg")
plt.show()
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.