File:Traintest.svg

Summary

Description
English: Plots showing a training set and a test set from the same statistical population. Two curves are fit to the training set, one of which is an overfit. By plotting these curves with the test data, the overfitting can be seen.
Date
Source Own work
Author Skbkekas
Other versions

[edit]

SVG development
InfoField
Source code
InfoField

Python code

import numpy as np
import matplotlib.pyplot as plt

m = 0.2 ## mesh on the abscissa
s = 3 ## standard deviation of errors

def pdesign(X, d):
    """Generate a polynomial design matrix on X of order d."""
    V = X[:,np.newaxis]
    F = [V**k for k in range(d+1)]
    D = np.concatenate(F, axis=1)
    return D

def regfit(Y, D):
    """Regress Y on D using least squares."""
    U,S,Vt = np.linalg.svd(D,0)
    V = np.transpose(Vt)
    return np.dot(U, np.dot(np.transpose(U), Y))

X = np.arange(-2, 2, m, dtype=np.float64)

D1 = pdesign(X, 3)
D2 = pdesign(X, 13)

EY = X + X**3
Y1 = EY + np.random.normal(size=len(X))*s
Y2 = EY + np.random.normal(size=len(X))*s

Yhat1 = regfit(Y1, D1)
Yhat2 = regfit(Y1, D2)

plt.clf()
plt.figure(figsize=(8,3))
ax1 = plt.axes([0.06,0.1,0.4,0.8])
plt.title("Training set")
plt.plot(X, Y1, 'o')
plt.hold(True)
plt.plot(X, Yhat1, '-', color='green')
plt.plot(X, Yhat2, '-', color='orange')
ax1.set_ylim(-10, 10)
ax1.set_xticks([-2,-1,0,1,2])
ax2 = plt.axes([0.56,0.1,0.4,0.8])
plt.title("Test set")
plt.plot(X, Y2, 'o')
plt.plot(X, Yhat1, '-', color='green')
plt.plot(X, Yhat2, '-', color='orange')
ax2.set_xticks([-2,-1,0,1,2])
ax2.set_ylim(-10, 10)
plt.savefig("traintest.png")
plt.savefig("traintest.svg")

print ((Yhat1-Y1)**2).mean()
print ((Yhat2-Y1)**2).mean()

print ((Yhat1-Y2)**2).mean()
print ((Yhat2-Y2)**2).mean()

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Category:CC-BY-3.0#Traintest.svg
Category:Self-published work Category:Statistical charts Category:Artificial intelligence training data
Category:Artificial intelligence training data Category:CC-BY-3.0 Category:Self-published work Category:Statistical charts Category:Valid SVG created with Matplotlib code