File:Window function (rectangular).png

Transferred from en.wikipedia to Commons by Tiaguito.

Summary

Description rectangular window and frequency response
Date
Source Own work
Author Bob K (original version), Olli Niemitalo
Permission
(Reusing this file)
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#Window%20function%20(rectangular).pngCategory:PD-self#Window%20function%20(rectangular).png
Other versions
File:Window function and frequency response - Rectangular.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.Category:Vector version available

File:Window function (rectangular).png → File:Window function and frequency response - Rectangular.svg

For more information, see Help:SVG.

In other languages
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
New SVG image

Source code
InfoField
The script below generates these .png images:

This script has not been tested in MATLAB. See the individual file histories for the simpler MATLAB scripts that were the basis of this script.

Generation of svg files by minor modification of the script displayed visual artifacts and renderer incompatibilities that could not be easily fixed. The current script fixes the visual artifacts in the png file as a post-processing step. The script generates a semi-transparent grid by taking a weighted average of two images, one with the grid and one without.
N
 
This PNG graphic was created with GNU Octave by Olli Niemitalo.
Category:PNG created with Octave code#Window%20function%20(rectangular).png

Matlab

function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")

Source code
InfoField

Octave

Source code
function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")
Category:Window function Category:Images with Octave source code
Category:Images with Octave source code Category:PD-self Category:PNG created with Octave code Category:Self-published work Category:Vector version available Category:Window function