File:Symplectic-method-for-harmonic-oscillator.svg

Summary

Description
日本語: 調和振動子をEuler法, 4次のRunge-Kutta法, 1次, 2次, 4次のシンプレクティック法で数値的に解いた際に生じる誤差の大きさのプロット. 時間ステップは 1/16.
Date
Source Own work
Author Osanshouo

Source code

'''Solve the harmonic oscillator $H = p^2/2 + q^2/2$'''

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["text.usetex"] = True
plt.rcParams["font.family"] = "DejaVu Sans"
plt.rcParams["font.size"] = 14

fig = plt.figure()
plt.subplots_adjust(left=0.15, right=0.75)
ax = fig.add_subplot(111)

dt = 1./16.
t_end = 8
def force(x, v):
    return -x

def solve(method, param):
    ts, xs, vs = [0.], [1.], [0.]
    while ts[-1] < 2.*np.pi*t_end:
        x, v = method(xs[-1], vs[-1])
        ts.append(ts[-1] + dt)
        xs.append(x)
        vs.append(v)
    ts, xs, vs = np.array(ts), np.array(xs), np.array(vs)
    ax.plot(ts/2./np.pi, np.fabs(xs**2 + vs**2 - 1.), **param)
    return 0

# Euler
def euler(x, v):
    return x + v*dt, v + force(x, v)*dt
solve(euler, {"label":"Euler"})

# RK4
def rk4(x, v):
    dx1, dv1 = v, -x
    dx2, dv2 = v+dv1*dt/2., force(x+dx1*dt/2., v+dv1*dt/2.)
    dx3, dv3 = v+dv2*dt/2., force(x+dx2*dt/2., v+dv2*dt/2.)
    dx4, dv4 = v+dv3*dt,    force(x+dx3*dt,    v+dv3*dt   )
    return x + (dx1 + 2.*(dx2 + dx3) + dx4)*dt/6., v + (dv1 + 2.*(dv2 + dv3) + dv4)*dt/6., 
solve(rk4, {"label": "RK4"})

# symp1
def symp1(x, v):
    x_tmp = x + v*dt
    return x + v*dt, v + force(x_tmp, v)*dt
solve(symp1, {"label":"Symp1", "ls":"-."})

# symp2
def symp2(x, v, dt=dt):
    x_tmp = x + v*dt/2.
    v_tmp = v + force(x_tmp, v)*dt
    return x_tmp + v_tmp*dt/2., v_tmp
solve(symp2, {"label":"Symp2", "ls":":"})

# symp4
def symp4(x, v):
    d1 = 1./(2. - np.cbrt(2.))
    d2 = 1. - 2.*d1
    x, v = symp2(x, v, dt=dt*d1)
    x, v = symp2(x, v, dt=dt*d2)
    return symp2(x, v, dt=dt*d1)
solve(symp4, {"label":"Symp4", "ls":"-."})

ax.set_xlabel("time $t/2\pi$")
ax.set_ylabel(r"energy error $\left| \Delta E \right| / E_0$")
ax.set_yscale("log")
ax.set_xlim([0, t_end])
ax.set_ylim(bottom=1e-11)
ax.grid()
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0, fontsize=14)

plt.savefig("symplectic-method-for-harmonic-oscillator.svg")
plt.show()
plt.close()

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Category:CC-BY-4.0#Symplectic-method-for-harmonic-oscillator.svg
Category:Self-published work Category:Numerical analysis Category:Images with Python source code
Category:CC-BY-4.0 Category:Images with Python source code Category:Numerical analysis Category:Self-published work