File:Spinning-disk.svg
Summary
| Description |
English: Illustration of a solid spinning disk |
| Date | |
| Source | Own work |
| Author | Geek3 |
| Other versions |
|
| SVG development |
Source code

This media was created with Python (general-purpose programming language)Category:Images with Python source code and svgwrite (Python library to create SVG drawings)Category:Images with svgwrite source code
Here is a listing of the source used to create this file.
Here is a listing of the source used to create this file.
#!/usr/bin/python
# -*- coding: utf8 -*-
try:
import svgwrite as svg
except ImportError:
print 'You need to install svgwrite: http://pypi.python.org/pypi/svgwrite/'
exit(1)
from math import *
size = 220, 146
rx, ry = size[0] / 2 - 3, 50
v = float(ry) / float(rx)
l = 40
lw = 2
# document
doc = svg.Drawing('spinning-disk.svg', size=size)
doc['stroke-width'] = lw
doc['fill'] = 'white'
doc['stroke'] = 'black'
doc['stroke-linejoin'] = 'miter'
# background
doc.add(doc.rect(id='background', insert=(0, 0), size=size, stroke='none'))
# disk
grad = doc.defs.add(doc.linearGradient(id='grad', start=('0%',0), end=('100%',0), gradientUnits='objectBoundingBox'))
grad.add_stop_color(offset=0, color='#F7F7F7')
grad.add_stop_color(offset=0.5, color='#DDD')
grad.add_stop_color(offset=1, color='#999')
disk = doc.add(doc.g(id='disk', transform='translate(' + str(size[0]/2) + ',' + str(ry+3) + ')'))
path = 'M ' + str(-rx) + ',0 V ' + str(l)
path += ' A ' + str(rx) + ',' + str(ry) + ' 0 1 0 ' + str(rx) + ',' + str(l)
path += ' V 0 Z'
disk.add(doc.path(d=path, fill='url(#grad)', stroke_linejoin='bevel'))
disk.add(doc.ellipse(center=(0, 0), r=(rx, ry), fill='#D8D8D8'))
disk.add(doc.ellipse(center=(0, 0), r=(2, 2.0*v), fill='black'))
radius_angle = radians(-40.0)
csr = cos(radius_angle), sin(radius_angle)
disk.add(doc.line(start=(0,0), end=(rx*csr[0], ry*csr[1]),
stroke_width=lw*sqrt(csr[0]**2 + (v*csr[1])**2)))
# round arrow
ar, aw, ah, ab, al, a0, a1 = 0.7*rx, 7, 2, 1, 3, radians(160), radians(100)
apath = 'M ' + str(ar*cos(a0)) + ',' + str(ar*sin(a0))
apath += ' A %f,%f 0 0 0 %f,%f' % (ar, ar, ar*cos(a1), ar*sin(a1))
arrowhead = doc.defs.add(doc.marker(id='arrowhead', orient='auto', overflow='visible'))
arrowhead.add(doc.path(fill='black', stroke='none',
d='M 0.0,0.0 L %f,%f L %f,0 L %f,%f L 0,0 z'%(-ab, -ah, al, -ab, ah)))
arrow = doc.path(d=apath, fill='none', stroke_width=aw, transform='scale(1,' + str(v) + ')')
arrow['marker-end'] = arrowhead.get_funciri()
disk.add(arrow)
# text
doc.add(doc.path(id='omega', stroke='none', fill='black',
transform='translate(70,70) scale(0.03,-0.03)',
d='M 13 0 m 251 82 c 9 -63 43 -93 94 -93 c 59 0 113 38 153 93 c 75 104 94 \
255 94 289 c 0 71 -37 71 -43 71 c -25 0 -50 -26 -50 -48 c 0 -13 6 -19 15 -27 \
c 32 -33 35 -65 35 -87 c 0 -85 -85 -219 -190 -219 c -9 0 -37 0 -55 23 c -12 \
16 -20 35 -20 55 c 0 3 0 5 6 16 c 19 45 33 100 33 113 c 0 12 -7 23 -21 23 c \
-11 0 -20 -9 -28 -25 c -2 -5 -14 -49 -21 -101 c -2 -18 -2 -20 -9 -27 c -44 \
-61 -90 -77 -124 -77 c -66 0 -88 55 -88 114 c 0 75 37 158 84 225 c 10 14 10 \
16 10 19 c 0 8 -6 12 -12 12 c -16 0 -62 -88 -76 -120 c -37 -89 -38 -171 -38 \
-180 c 0 -80 30 -142 106 -142 c 65 0 113 46 145 93 z'))
doc.add(doc.path(id='r', stroke='none', fill='black',
transform='translate(152,60) scale(0.03,-0.03)',
d='M 29 0 m 59 59 c -3 -15 -9 -38 -9 -43 c 0 -18 14 -27 29 -27 c 12 0 30 8 \
37 28 c 2 4 36 140 40 158 c 8 33 26 103 32 130 c 4 13 32 60 56 82 c 8 7 37 33 \
80 33 c 26 0 41 -12 42 -12 c -30 -5 -52 -29 -52 -55 c 0 -16 11 -35 38 -35 c \
27 0 55 23 55 59 c 0 35 -32 65 -83 65 c -65 0 -109 -49 -128 -77 c -8 45 -44 \
77 -91 77 c -46 0 -65 -39 -74 -57 c -18 -34 -31 -94 -31 -97 c 0 -10 10 -10 12 \
-10 c 10 0 11 1 17 23 c 17 71 37 119 73 119 c 17 0 31 -8 31 -46 c 0 -21 -3 \
-32 -16 -84 z'))
doc.save()
Licensing
Geek3, the copyright holder of this work, hereby publishes it under the following licenses:
| Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. |
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
Attribution:
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may select the license of your choice.