| | | ∅c | | | | | | | | A = A | | | |
| | |  | | | | | | | |  | | | |
| | Ac Bc | true A ↔ A | A B | | | | | | A Bc | A A | A Bc | | |
| |  | |  | | | | | |  | |  | | |
| A Bc | ¬A ¬B A → ¬B | A B | A B A ← ¬B | Ac B | | | | A B | A ¬B | A = Bc | A ¬B | A B | |
|  | |  | |  | | | |  | |  | |  | |
Bc | A ¬B A ← B | A | A B A ↔ ¬B | Ac | ¬A B A → B | B | | B = ∅ | A B | A = ∅c | A ¬B | A = ∅ | A B | B = ∅c |
 | |  | |  | |  | |  | |  | |  | |  |
¬B | A Bc | A | (A B)c | ¬A | Ac B | B | | B false | | A true | A = B | A false | | B true |
|  | |  | |  | | | |  | |  | |  | |
| A ¬B | Ac Bc | A B | A B | ¬A B | | | | | | A B | | | |
| |  | |  | | | | | |  | |  | | |
| | ¬A ¬B | ∅ | A B | | | | | | | A = Ac | | | |
| | |  | | | | | | | |  | | | |
| | | false A ↔ ¬A | | | | | | | | A ¬A | | | |
These sets (statements) have complements (negations). They are in the opposite position within this matrix. |
|
These relations are statements, and have negations. They are shown in a separate matrix in the box below. |