File:VFPt sphere-magnet potential+contour.svg

Summary

{{Information

|description=

English: Drawing of a homogeneously magnetized spherical magnet with exactly computed magnetic field lines. A spherical magnet has the remarkable property that its field outside the magnet is identical to that of an ideal point-like dipole. Inside the magnetized volume, the field is exactly constant and aligned along the north-south axis. The magnetic scalar potential 𝜓 is shown in the background from positive (fuchsia) through zero (yellow) to negative (aqua) together with uniformely spaced equipotential lines. Note that the field lines follow the gradient of the scalar potential.

|date=2019-09-27 |source=Own work |author=Geek3 |permission= |other versions= |other fields={{Igen|VectorFieldPlot|+|c1=

  1. paste this code at the end of VectorFieldPlot 2.3

doc = FieldplotDocument('VFPt_sphere-magnet_potential+contour', commons=True,

   width=600, height=600)

R = 1.0 c = np.array([0., 0.]) M = np.array([0., 1.]) field_outside = Field([ ['dipole', {'x':c[0], 'y':c[1], 'px':M[0]*4./3.*pi*R**3, 'py':M[1]*4./3.*pi*R**3}] ]) Bfield_inside = Field([ ['homogeneous', {'Fx':2./3.*M[0], 'Fy':2./3.*M[1]}] ]) Hfield_inside = Field([ ['homogeneous', {'Fx':-1/3.*M[0], 'Fy':-1/3.*M[1]}] ])

def spheremagnet_Bfield(xy):

   if vabs(xy - c) < R:
       return Bfield_inside.F(xy)
   else:
       return field_outside.F(xy)

def spheremagnet_potential(xy):

   if vabs(xy - c) < R:
       return Hfield_inside.V(xy)
   else:
       return field_outside.V(xy)

field = Field([ ['custom', {'F':spheremagnet_Bfield, 'V':spheremagnet_potential}] ])

U0 = field.V(c + R * vnorm(M)) doc.draw_scalar_field(func=field.V, cmap=doc.cmap_AqYlFs, vmin=-U0, vmax=U0) doc.draw_contours(func=field.V, levels=np.linspace(-U0, U0, 17)[1:-1])

nlines = 20 for iline in range(nlines):

   p0 = (R * (2 * (iline + 0.5) / nlines - 1), 0.)
   line = FieldLine(field, p0, directions='both', maxr=7)
   if fabs(iline - (nlines - 1) / 2.) < 6.:
       arst = {'at_potentials':[-1.5/8 * U0, 1.5/8 * U0]}
   else:
       arst = {'max_arrows':1}
   doc.draw_line(line, linewidth=2.4, arrows_style=arst)
  1. draw the spherical magnet

g = doc.draw_object('g', {'id':'sphere',

   'transform':'translate({},{})'.format(*c)})

defs = doc.draw_object('defs', {}, group=g) grad = doc.draw_object('radialGradient', {'id':'grad', 'r':str(1.2*R),

   'cx':'0', 'cy':str(0.2*R), 'fx':'0', 'fy':str(0.6*R),
   'gradientUnits':'userSpaceOnUse'}, group=defs)

for col, of, opa in [['#ffffff', '0', '0.8'], ['#ffffff', '0.04', '0.7'],

       ['#ffffff', '0.11', '0.4'], ['#ffffff', '0.22', '0.2'],
       ['#555555', '0.7', '0.3'], ['#000000', '1', '0.6']]:
   stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
       'stop-opacity':opa}, group=grad)

clip = doc.draw_object('clipPath', {'id':'circle_clip'}, group=defs) doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':str(R)}, group=clip)

gc = doc.draw_object('g', {'clip-path':'url(#circle_clip)'}, group=g) doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':str(R),

   'style':'fill:#00cc00; stroke:none;'}, group=gc)

doc.draw_object('path', {'d':'M -1,0 A 1,1 0 0 0 1,0 L -1,0 Z',

   'style':'fill:#ff0000; stroke:none;'}, group=gc)

text_N = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',

   'transform':'translate({},{}) scale({},{})'.format(0, 0.56*R-0.2, 0.05, -0.05),
   'style':'fill:#000000; stroke:none; ' +
   'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)

text_N.text = 'N' text_S = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',

   'transform':'translate({},{}) scale({},{})'.format(0, -0.56*R-0.2, 0.05, -0.05),
   'style':'fill:#000000; stroke:none; ' +
   'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)

text_S.text = 'S' doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':str(R),

   'style':'fill:url(#grad); stroke:none;',
   'transform':'rotate(30) scale(1.4,1)'}, group=gc)

doc.draw_object('circle', {'cx':'0', 'cy':'0', 'r':str(R),

    'style':'fill:none; stroke:#000000; stroke-width:0.04;'}, group=g)

doc.write() }} }}


Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#VFPt%20sphere-magnet%20potential+contour.svgCategory:Self-published work
Category:Field lines around magnets (image set) Category:Field lines around magnets Category:Dipole magnet Category:Magnetic scalar potential Category:Photos by User:Geek3
Category:CC-BY-SA-4.0 Category:Dipole magnet Category:Field lines around magnets Category:Field lines around magnets (image set) Category:Magnetic scalar potential Category:Photos by User:Geek3 Category:Self-published work Category:Valid SVG created with VectorFieldPlot code