File:Tidal field and gravity field.svg

Summary

Description
English: Tidal field (thick red arrows) and gravity field (thin blue arrows) exerted on Earth's surface and center (label O) by the Moon (label S).
Date
Source Own work
Author fgnievinski
SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with Matplotlib.
Category:Valid SVG created with Matplotlib code#Tidal%20field%20and%20gravity%20field.svg
 
The file size of this SVG plot may be irrationally large because its text has been converted to paths inhibiting translations.
Category:Path text SVG
Source code
InfoField
Matplotlib code
import matplotlib.pyplot as plt
import numpy as np

if __name__ == "__main__":
    fig = plt.figure(figsize=(15.2, 8))
    ax = fig.add_subplot(111)

    R = 10  # planet radius
    pp = [0, 0]  # planet position
    ps = [40, 0]  # satellite position
    k = 2750  # force scale

    dist = lambda p1, p2: np.sqrt( (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2 )  # Euclidean distance
    irsq = lambda p: 1 / dist(p, ps)**2   # inverse square distance
    gmag = lambda p: k*irsq(p)           # satellite's gravity force magnitude
    gdir = lambda p: np.divide(np.subtract(ps, p), dist(ps, p))  # satellite's gravity force direction
    gvec = lambda p: gmag(p)*gdir(p)     # satellite's gravity force vector
    
    gp = gvec(pp)  # satellite's gravity vector at center of planet
    tvec = lambda p: gvec(p)-gp  # satellite's tide force vector

    theta = np.linspace(-np.pi, np.pi, 50)  # circle internal angle
    for ti in theta:
        pi = [-R * np.cos(ti), R * np.sin(ti)]  # evaluation point on the perimeter (planet's surface)
        ti = tvec(pi)  # tide at evaluation point
        gi = gvec(pi)  # gravity at evaluation point
         
        ax.arrow(pp[0], pp[1], gp[0], gp[1], head_width=0.5/2, head_length=0.7/2, fc='b', color='b')
        ax.arrow(pi[0], pi[1], gi[0], gi[1], head_width=0.5/2, head_length=0.7/2, fc='b', color='b')
        ax.arrow(pi[0], pi[1], ti[0], ti[1], head_width=0.5/1, head_length=0.7/1, fc='r', color='r')

    ax.plot(pp[0], pp[1], 'ok')
    #ax.annotate(r"+", xytext=(0,0), size=30, xy=(0,0), ha="center", va="center")
    ax.annotate(r"O", xytext=(-1,0), size=30, xy=(0,0), ha="center", va="center")
    ax.annotate(r"S", xy=(25,0), xytext=(15,0),
                size=30, va="center",
                arrowprops=dict(arrowstyle="fancy", fc='k'))
    ax.set_xlim(-13, 25)
    ax.set_ylim(-11, 11)
    ax.plot(R*np.cos(theta), R*np.sin(theta), '-k', linewidth=3.)
    ax.set_aspect('equal', 'box')
    ax.axis('off')
    plt.savefig('field tidal.svg', bbox_inches='tight', pad_inches=.15, transparent='true')

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Tidal%20field%20and%20gravity%20field.svg
Category:Self-published work

This file was derived from: Field tidal.svg by original author
Category:Derivative versions

Category:Tidal forces Category:Gravitational field Category:Images with Python source code
Category:CC-BY-SA-4.0 Category:Derivative versions Category:Gravitational field Category:Images with Python source code Category:Path text SVG Category:Self-published work Category:Tidal forces Category:Valid SVG created with Matplotlib code