File:Stock-indices-2020crash.svg

Summary

Description
English: Stock index chart at the 2020 stock market crash
Date
Source Own work
Author Geek3
SVG development
InfoField
Source code
InfoField

Python code

#!/usr/bin/python3
# -*- coding: utf8 -*-

import csv
import datetime
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

class Stock:
    def __init__(self, name):
        self.data = self.get_csv(name)
        self.convert_types()
        self.filter_date(datetime.datetime(2020, 1, 1), datetime.datetime(2020, 4, 6))
    
    def get_csv(self, name):
        try:
            with open(name, 'r' ) as f:
                reader = csv.DictReader(f)
                return [line for line in reader]
        except FileNotFoundError as ex:
            print(ex)
            print('get data from', 'https://finance.yahoo.com/quote/DAX/history?p=DAX')
            exit()
    
    def convert_types(self):
        for il, l in enumerate(self.data):
            for k in l.keys():
                try:
                    if k == 'Date':
                        l[k] = datetime.datetime.strptime(l[k], '%Y-%m-%d')
                    else:
                        l[k] = float(l[k])
                except Exception:
                    del self.data[il]
    
    def filter_date(self, date, date2=None):
        self.data = [i for i in self.data if i['Date'] >= date]
        if date2 is not None:
            self.data = [i for i in self.data if i['Date'] <= date2]
    
    def get_dates(self):
        return [l['Date'] for l in self.data]
    
    def get_values(self):
        return np.array([float(l['Close']) for l in self.data])
    
    def get_values_norm(self):
        v = self.get_values()
        #vmean = np.mean([v for i, v in enumerate(v) if self.data[i]['Date'].month == 1])
        #return v / vmean
        return v / max(v)

# data is found on finance.yahoo.com
data_spx = Stock('^GSPC.csv')
data_DJI = Stock('^DJI.csv')
data_stoxx50e = Stock('^STOXX50E.csv')
data_DAX = Stock('^GDAXI.csv')

plt.figure(figsize=[5.6, 4.2])
ax = plt.gca()
ax.set_prop_cycle(color=['#0072bd', '#d95319', '#edb120', '#7e2f8e'])

plt.plot(data_spx.get_dates(), 100*data_spx.get_values_norm(), 'o-', ms=3, label='S&P 500')
plt.plot(data_DJI.get_dates(), 100*data_DJI.get_values_norm(), 'o-', ms=3, label='Dow Jones')
plt.plot(data_stoxx50e.get_dates(), 100*data_stoxx50e.get_values_norm(), 'o-', ms=3, label='EURO STOXX 50')
plt.plot(data_DAX.get_dates(), 100*data_DAX.get_values_norm(), 'o-', ms=3, label='DAX')

ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_major_formatter(mpl.dates.DateFormatter("%Y-%m"))
ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.0f%%'))

plt.axvline(datetime.datetime(2020, 3, 9), color='k')
ax.text(datetime.datetime(2020, 3, 9), 0.64, 'BMI', fontsize=11, ha='left', va='bottom',
    transform=mpl.transforms.blended_transform_factory(ax.transData, ax.transAxes))
ax.text(datetime.datetime(2020, 3, 16), 0.51, 'BMII', fontsize=11, ha='left', va='bottom',
    transform=mpl.transforms.blended_transform_factory(ax.transData, ax.transAxes))
plt.axvline(datetime.datetime(2020, 3, 16), color='k')

plt.xlabel('date')
plt.ylabel('value relative to 2020 maximum')
plt.grid(True)
plt.legend(loc='center left', framealpha=1, edgecolor='k', borderpad=0.7, borderaxespad=2)
plt.tight_layout()
plt.savefig('stock-indices-2020crash.svg')
plt.show()

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Stock-indices-2020crash.svg
Category:Self-published work Category:2020 stock market crash Category:Diagrams about the socioeconomic impact of the COVID-19 pandemic Category:Photos by User:Geek3
Category:2020 stock market crash Category:CC-BY-SA-4.0 Category:Diagrams about the socioeconomic impact of the COVID-19 pandemic Category:Photos by User:Geek3 Category:Self-published work Category:Valid SVG created with Matplotlib code