File:Runge-kutta.svg
Summary
| Description |
Deutsch: Runge-Kutta Methoden für die Differentialgleichung y'=sin(t)^2*y |
| Date | |
| Source |
|
| Author |
| This is a retouched picture, which means that it has been digitally altered from its original version. Modifications: converted into svg. The original can be viewed here: RK Verfahren.png: |
R Code
# differential equation y'=sin(t)^2 * y
dy <- function(t, y) sin(t)^2 * y
# exact solution
exact <- function(t) 2 * exp(0.5*(t - sin(t)*cos(t)))
# euler's method
euler <- function(t, y, h, fun) {
y1 <- y + h*fun(t, y)
return(c(t + h, y1))
}
# heun's method
heun <- function(t, y, h, fun) {
yp <- y + h*fun(t, y)
y1 <- y + 0.5*h * (fun(t, y) + fun(t+h, yp))
return(c(t + h, y1))
}
# classical Runge–Kutta method
runge <- function(t, y, h, fun) {
y0 <- fun(t, y)
ya <- fun(t+h/2, y + h/2*y0)
yb <- fun(t+h/2, y + h/2*ya)
yc <- fun(t+h, y + h*yb)
y1 <- y + h/6*(y0 + 2*(ya+yb) + yc)
return(c(t + h, y1))
}
# step size = 0.5, last value = 5
h <- 0.5
niter <- 5/h
run <- eul2 <- eul <- heu <- data.frame(t=0, y=exact(0))
for(i in seq_len(niter)+1) {
eul[i, ] <- euler(t=eul$t[i-1], y=eul$y[i-1], h=h, fun=dy)
heu[i, ] <- heun (t=heu$t[i-1], y=heu$y[i-1], h=h, fun=dy)
run[i, ] <- runge(t=run$t[i-1], y=run$y[i-1], h=h, fun=dy)
}
# euler's method with reduced step size
h <- 0.25
niter <- 5/h
for(i in seq_len(niter)+1) {
eul2[i, ] <- euler(t=eul2$t[i-1], y=eul2$y[i-1], h=h, fun=dy)
}
# evaluating exact solution at
t <- seq(0, 5, 0.1)
# concatenating the methods into a data.frame
odesolve <- rbind(data.frame(t=t, y=exact(t), method="Exact Solution"),
data.frame(run, method="Runge-Kutta method"),
data.frame(heu, method="Heun's method"),
data.frame(eul2, method="Euler's method (reduced step size)"),
data.frame(eul, method="Euler's method"))
# translating into german
odesolve$method <- factor(odesolve$method,
levels=c("Exact Solution", "Runge-Kutta method",
"Heun's method",
"Euler's method (reduced step size)",
"Euler's method"),
labels=c("Exakte Lösung", "Klassisches Runge-Kutta",
"Heun", "Euler (halbe Schrittweite)",
"Euler"))
library(ggplot2)
p <- ggplot(odesolve, aes(x=t, y=y, col=method)) + geom_line() +
geom_point(data=subset(odesolve, as.numeric(method)!=1)) +
scale_color_discrete("") +
theme_bw() + theme(legend.position=c(0.02, 1), legend.justification=c(0, 1))
ggsave("runge-kutta.svg", width=8, height=6, plot=p)
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.