File:Geometric cdf.svg
Summary
| Description |
English: Plots of the cumulative distribution functions for several members of the geometric family of probability distributions. |
| Date | |
| Source |
Own work |
| Author | Skbkekas |
| SVG development | |
| Source code | Python codeimport numpy as np
import matplotlib.pyplot as plt
import scipy.special as sp
col = {0.2: 'orange', 0.5: 'purple', 0.8: 'lightblue'}
plt.clf()
plt.figure(figsize=(7.5,3.2))
ax1 = plt.axes([0.08,0.13,0.4,0.8])
ax2 = plt.axes([0.57,0.13,0.4,0.8])
plt.hold(True)
X1 = np.arange(1,11)
X2 = np.arange(0,11)
ms = 4.9
A1,A2 = [],[]
for p in 0.2,0.5,0.8:
Y1 = 1 - (1-p)**X1
Y2 = 1 - (1-p)**(X2+1)
for k in range(len(Y1)-1):
ax1.plot([X1[k],X1[k]+1], [Y1[k],Y1[k]], '-', color='grey')
ax2.plot([X2[k],X2[k]+1], [Y2[k],Y2[k]], '-', color='grey')
ax1.plot(X1[1:], Y1[:-1], 'o', mec='k', mfc='w', ms=ms)
ax2.plot(X2[1:], Y2[:-1], 'o', mec='k', mfc='w', ms=ms)
a1 = ax1.plot(X1, Y1, 'o', color=col[p], ms=ms)
a2 = ax2.plot(X2, Y2, 'o', color=col[p], ms=ms)
A1.append(a1)
A2.append(a2)
ax1.set_xlabel("x")
ax1.set_ylabel(u"P(X\N{Less-THAN OR EQUAL TO}x)")
ax2.set_xlabel("x")
ax2.set_ylabel(u"P(X\N{Less-THAN OR EQUAL TO}x)")
bx1 = ax1.legend(A1, ("p=0.2", "p=0.5", "p=0.8"),\
numpoints=1, handletextpad=0, loc="lower right")
bx2 = ax2.legend(A2, ("p=0.2", "p=0.5", "p=0.8"),\
numpoints=1, handletextpad=0, loc="lower right")
bx1.draw_frame(False)
bx2.draw_frame(False)
ax1.set_xlim(-0.2,10.2)
ax2.set_xlim(-0.2,10.2)
ax1.set_ylim(-0.05,1.05)
ax2.set_ylim(-0.05,1.05)
plt.savefig("geometric_cdf.pdf")
plt.savefig("geometric_cdf.svg")
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.