File:Diagonalization as rotation.gif
Summary
| Description |
English: You can visualize a matrix diagonalization as a rotation of your axis to align them with the matrix eigenvectors. |
| Date | |
| Source | https://twitter.com/j_bertolotti/status/1192396841381515264 |
| Author | Jacopo Bertolotti |
| Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
| Camera location | | View this and other nearby images on: OpenStreetMap |
|---|
Mathematica 11.0 code
m = RandomReal[{-10, 10}, {3, 3}];
m = Round[(m + Transpose[m])/2, 0.01];
\[Lambda] = Eigenvalues[m];
\[Psi] = Eigenvectors[m];
angle[u_, v_] := ArcCos[u.v/(Norm[u] Norm[v])];
xyz = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
\[Alpha]1 = \[Alpha] /. NMinimize[Norm[EulerMatrix[{\[Alpha], 0, 0}].xyz[[2]] - Cross[{0, 0, 1}, \[Psi][[3]]]/Norm[Cross[{0, 0, 1}, \[Psi][[3]]]] ], \[Alpha]][[2]];(*rotate y in the plane perpendicular to Subscript[\[Psi], z]*)
\[Beta]1 = angle[{0, 0, 1}, \[Psi][[3]]];
\[Gamma]1 = -angle[Cross[{0, 0, 1}, \[Psi][[3]]], \[Psi][[2]]];
p1 = Table[
Grid[{{
PaddedForm[MatrixForm[Inverse[EulerMatrix[{\[Alpha], 0, 0}]].m.EulerMatrix[{\[Alpha], 0, 0}] ], {3, 2}], Graphics3D[{Gray, Table[Arrow[{{0, 0, 0}, xyz[[j]]}], {j, 1, 3}], Sphere[{0, 0, 0}, 0.1]
, Black, Table[Arrow[{{0, 0, 0}, EulerMatrix[{\[Alpha], 0, 0}].xyz[[j]]}], {j, 1, 3}] }, Boxed -> False, PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}]
}}]
, {\[Alpha], 0, \[Alpha]1, \[Alpha]1/40}];
p2 = Table[
Grid[{{
PaddedForm[MatrixForm[Round[Inverse[EulerMatrix[{\[Alpha]1, \[Beta], 0}]].m.EulerMatrix[{\[Alpha]1, \[Beta], 0}], 0.01] ], {3,2}], Graphics3D[{Gray, Table[Arrow[{{0, 0, 0}, xyz[[j]]}], {j, 1, 3}],
Sphere[{0, 0, 0}, 0.1], Black, Table[Arrow[{{0, 0, 0}, EulerMatrix[{\[Alpha]1, \[Beta], 0}].xyz[[j]]}], {j, 1, 3}]
}, Boxed -> False, PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}]
}}]
, {\[Beta], 0, \[Beta]1, \[Beta]1/40}];
p3 = Table[
Grid[{{
PaddedForm[MatrixForm[Round[Inverse[EulerMatrix[{\[Alpha]1, \[Beta]1, \[Gamma]}]].m.EulerMatrix[{\[Alpha]1, \[Beta]1, \[Gamma]}], 0.01] ], {3, 2}], Graphics3D[{Gray, Table[Arrow[{{0, 0, 0}, xyz[[j]]}], {j, 1, 3}], Sphere[{0, 0, 0}, 0.1], Black, Table[Arrow[{{0, 0, 0}, EulerMatrix[{\[Alpha]1, \[Beta]1, \[Gamma]}].xyz[[j]]}], {j, 1, 3}]
}, Boxed -> False, PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}]
}}]
, {\[Gamma], 0, \[Gamma]1, \[Gamma]1/40}];
ListAnimate[Join[p1, p2, p3, Table[p3[[-1]], 30]]]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|
Category:Animated GIF files
Category:CC-Zero
Category:Eigenvalue problems
Category:Files with coordinates missing SDC location of creation (52° N, 8° E)
Category:Images with Mathematica source code
Category:Matrices
Category:Matrix diagonalization
Category:Rotation animations
Category:Self-published work